Solving Portfolio Optimization Problems Using MOEA/D and Lévy Flight

Knowledge System Lab Yifan He Supervisors: Hitoshi Kanoh, Claus Aranha

Outline

Lévy Flight keeps a good balance between local and global search. Furthermore, it utilizes structural information of the problem when solving portfolio optimization.

- Background
- Related Work
- Proposed Method
- Experiments

An example of portfolio on four stocks

AAPL
AMZN
GOOGL
MSFT

Description of Portfolio

• One single stock

Get many money Get little money Lose little money Lose many money

Return as a random variable R_i

• With normal assumption, $E(R_i)$ $V(R_i)$ Average Chance of a low return return = Risk

Mean-Variance Description of Portfolio [Markowitz 1954]

• Portfolio: weighted sum of stocks $R = \sum_{i=1}^{n} w_i \cdot R_i$

 w_i : *i*-th invest weight R_i :*i*-th asset return

- Portfolio return: expectation value of a sum $E(R) = \sum_{i=1}^{n} w_i \cdot E(R_i)$
- Portfolio risk: variance of a sum

$$V(R) = \sum_{i=1}^{n} \sum_{j=1}^{n} w_i \cdot w_j \cdot Cov(R_i, R_j)$$

Unconstrained PO Problem

- Given n stocks holding returns $\{R_1, \dots, R_n\}$
- Find a portfolio weight {w₁, …, w_n}
 Maximize portfolio return

$$\sum_{i=1}^{n} w_i \cdot E(R_i)$$

Minimize portfolio risk

$$\sum_{i=1}^{n} \sum_{j=1}^{n} w_i \cdot w_j \cdot Cov(R_i, R_j)$$

- Subject to,
 - \circ Unit constraint $\sum_{i=1}^{n} w_i = 1$
 - \circ No short selling $w_i \geq 0$

Importance of PO Problem

• Practical meaning (it makes money)

- Theoretical meaning (it is hard)
 - High dimension
 - NP-hard with proper constraints
 [Bienstock 1996]

MOEA based on Decomposition (MOEA/D) [Zhang 2007]

• E.g. PO: {max E , min V} \Rightarrow min{-E, V}

•
$$s_1 = -0.0E + 1.0V$$

•
$$s_2 = -0.2E + 0.8V$$

•
$$s_3 = -0.4E + 0.6V$$

•
$$s_4 = -0.6E + 0.4V$$

•
$$s_5 = -0.8E + 0.2V$$

• $s_6 = -1.0E + 0.0V$

Sub-problems

 $x^{(i)}$: solution of s_i

Borrow from neighbors

- Before reproduction: Select from neighbors
- After reproduction: Update neighbors by offspring

Mutation Methods in MOEA/D

Algorithm		Mutation	Publication
MOEA/D-	PSO	Particle Swarm Optimization	[Peng 2008]
	DE	Differential Evolution	[Li 2009]
	ACO	Ant Colony Optimization	[Ke 2013]

- MOEA/D-DE [Li 2009]
 - DE mutation: $y = x^{(i)} + F \cdot (x^{(j)} x^{(k)})$ • Polynomial mutation

Lévy Flight (LF): A Comparison with Random Walk

 Random walk (RW) whose step length follows stable distribution (heavy-tailed)

100 Steps of RW and LF from (0,0) in 2D Space 11

Related Work: Solving PO with MOEAs

- Non-MOEA/D methods
 - SPEA2, NSGA-II [Mishra 2011]
 - NS-MOPSO [Mishra 2014], MOBFO [Mishra 2014], M-CABC [Kumar 2017]
- MOEA/D-based methods
 - Mutation: MOEA/D-DE [Zhang 2010] (with DE mutation only in reproduction)
 - Weight vector: MOEA/D-CP [Zhang 2018]
 - Initialization: DEA-MOEA/D [Zhou 2019]

Proposed Method: MOEA/D-Lévy

- Inject LF mutation into MOEA/D:
 - $\circ y = x^{(i)} + \alpha_0 \cdot (x^{(i)} x^{(j)}) \oplus Levy(\beta)$ ⊕ : entry-wise multiplication α_0 : scaling factor $\beta \in [0.3, 1.99]$: shape parameter \circ Polynomial mutation
- Repair steps
 - Set negative variables to 0
 - Scale to satisfy unit constraint

Experimental Settings

- Data: PO benchmark in OR library (Nikkei, size=225) [Chang 2000]
- Parameters, convergence settings are finetuned or set according to prior studies
- Evaluation Metrics (totally six)

 Inverted Generation Distance (IGD)
 Hypervolume (HV)

Comparison with Literature Methods

Method		Mutation	Publication	
MOEA/D-	Lévy	LF mutation+ Polynomial mutation	Proposed method	
	DEM	DE mutation + Polynomial mutation	[Li 2009]	
	DE	DE mutation only	[Zhang 2010]	
	GA	GA reproduction	[Zhang 2007]	
NSGA-II		GATEPIOUUCION	[Deb 2002]	

Experimental Results on Nikkei

MOEA/D -Lévy	MOEA/D -DEM	MOEA/D -DE	MOEA/D -GA	NSGA-II
1.77e-05	1.90e-05	7.90e-05	1.77e-04	4.64e-05
2.39e-05	2.73e-05	2.23e-04	2.41e-04	9.69e-05
1.15e-05	4.09e-04	6.95e-05	5.29e-04	3.67e-05
8.31e-06	8.29e-06	7.96e-06	7.87e-06	8.19e-06
<u>8.29e-06</u>	8.26e-06	7.23e-06	7.54e-06	7.94e-06
1.59e-08	9.52e-07	3.43e-07	1.20e-06	1.08e-07
	MOEA/DLévy1.77e-052.39e-051.15e-058.31e-068.29e-061.59e-08	MOEA/D LévyMOEA/D LOEM1.0001.0001.7701.9002.3902.7301.1504.0908.3108.2908.2908.2601.5909.520	MOEA/D LévyMOEA/D LOEMMOEA/D LOEM1.évy1.90e.057.90e.051.77e.051.90e.052.23e.041.15e.054.09e.046.95e.058.31e.068.29e.067.96e.068.29e.068.26e.077.23e.051.59e.089.52e.073.43e.07	Moeal LévyMoeal LevyMoeal LevyMoeal Levy1.77e-051.90e-057.90e-051.77e-041.77e-052.73e-052.23e-042.41e-041.15e-054.09e-046.95e-055.29e-048.31e-068.29e-067.96e-067.87e-068.29e-069.52e-073.43e-071.20e-06

*The special font shows **Best** and **Statistical significance** 16

Comparison with Other Distribution-based Mutation

Method	Mutation
LEVY	$y = x^{(i)} + \alpha_0 \cdot (x^{(i)} - x^{(j)}) \oplus Levy(\beta)$
UNIF	$y = x^{(i)} + C \cdot (x^{(j)} - x^{(k)}) \oplus Unif(-1, 1)$
NORM	$y = x^{(i)} + C \cdot (x^{(j)} - x^{(k)}) \oplus N(0, 1)$
CONST	$\mathbf{y} = \mathbf{x}^{(i)} + F \cdot (\mathbf{x}^{(j)} - \mathbf{x}^{(k)}) \oplus 1$

Trajectories as Capital Reallocation in PO

Strategy	Asset Type	Portfolio
Random	-	Low risk
Centralized	High return	High return

Heavy-tailed

- Many small values
- Few large values

Re-allocation by LF is centralized!

Trajectories as Capital Reallocation in PO

0.10 0.15 0.20 0.15 0.18 0.02 0.20

Mutation (Re-allocation) Vector by LF

	0.05	5.00	0.10	0.50	0.08	0.02	0.67
--	------	------	------	------	------	------	------

Offspring before Repair

0.15	5.15	0.30	0.65	0.26	0.04	0.87
------	------	------	------	------	------	------

Offspring after Repair

0.02 **0.69** 0.04 0.09 0.03 0.01 0.12

Conclusions

- Summary of the Research
 - Inject LF into MOEA/D and assess on PO
 - Relation between long trajectories and moving solution to high return areas
 - Explain by considering property of PO
- Future Work
 - Adaptive strategy
 - Solve sub-problems with different mutation methods