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Yifan He

(Master’s Program in Computer Science)

Advised by Hitoshi Kanoh

Submitted to the Graduate School of
Systems and Information Engineering

in Partial Fulfillment of the Requirements
for the Degree of Master of Engineering

at the
University of Tsukuba

March 2020



Abstract

Portfolio optimization (PO) is a financial task that requires an investment allocation of
capital on a set of financial assets to achieve a better trade-off between return and risk.
PO belongs to the big category of the multi-objective optimization problem, a class of
optimization tasks containing more than one conflicting objectives. Therefore, recent studies
applied multi-objective evolutionary algorithms (MOEAs) to solve the PO. Among the large
group of MOEAs, MOEA/D is a method decomposing a hard MOOP into several simple
single-objective optimization problems, and solving them simultaneously in one single run.

The mutation method is one of the important components in a MOEA. In some complex
problems, an efficient mutation method should well control the balance between local search
and global search, and sometimes utilizes the structural information of the problem, in order
to converge to the real optimal. For MOEA/D, researchers have tried to use mutation
methods, such as differential evolution mutation, to enhance the performance.

This thesis proposes an MOEA/D-based method, injecting an efficient mutation method
named Lévy Flight (LF). LF is the moving pattern of the creature’s foraging activity in a
large space, without any given information on food source. However, the search efficiency
of LF is not only derived from its biological meaning. Mathematically, it well controls the
balance between local search and global search by a probability distribution, yet I show
that LF utilizes the structural information of the PO in the later discussion.

In the experiments, the proposed algorithm is first compared with several literature
methods, including three MOEA/D-based algorithms (MOEA/D-DEM, MOEA/D-DE, and
MOEA/D-GA) and NSGA-II, to show its superiority on the PO tasks. Five PO benchmarks
sized from 31 to 225 in OR library are used with unit constraint. Six evaluation metrics,
namely generation distance, spacing, maximum spread, spread, inverted generation dis-
tance, and hypervolume, are used to provide a comprehensive assessment. The second
experiment compares mutation methods based on different probability distributions. By
tracking the distance between parents and offspring, I show LF contributes to the improve-
ment by promoting global search early in the optimization. In addition, an explanation of
this behavior is provided in the discussion, considering the structure of the PO. What is
more, the last two experiments show extra evidence of the efficiency of LF, by comparison
on LF with different truncation and comparison on the mutation methods based on normal
distributions with different variance.

Overall speaking, the proposed method shows a superior performance on the PO, be-
cause LF well controls the balance between local search and global search, and utilizes
the structural information of the problem. The property of LF that searches efficiently in
the beginning phase can speed up the whole optimization. Based on this result, one may
design an adaptive or hybrid strategy to implement a practical PO solution. However, as
the discussion in this thesis is based on benchmarks with only one simple constraint, the
performance of this method in real-world PO remains a further investigation.



Contents

1 Introduction 1

2 Background 4
2.1 Portfolio Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Modern Portfolio Theory . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Unconstrained Portfolio Optimization Problem . . . . . . . . . . . . 5

2.2 Multi-Objective Optimization Problem . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Domination and Pareto Front . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Difficulties in Multi-Objective Optimization Problem . . . . . . . . . 7

2.3 Multi-Objective Evolutionary Algorithm based on Decomposition . . . . . . 8
2.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 Procedure of the Algorithm . . . . . . . . . . . . . . . . . . . . . . . 13
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A.3 Results of parameter tuning on β in MOEA/D-Lévy . . . . . . . . . . . . . 60
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Chapter 1

Introduction

Multi-objective optimization problems (MOOPs) consist of several conflicting objectives
and require that an optimization algorithm finds an optimal set of trade-offs rather than
a single optimal solution. In the financial world, researchers and investors face a famous
MOOP known as portfolio optimization (PO). The goal of this problem is to find an optimal
allocation of capital among a finite set of available financial assets, by maximizing portfolio
return and minimizing portfolio risk simultaneously.

The first importance of the PO comes from the financial point of view. Investors such as
banks, asset management companies and financial consultants are faced with the challenges
of managing their funds, assets, and stocks. PO provides a computational method towards
the optimal asset allocation. Another importance of the PO comes from its mathematical
property. One of the challenges of the PO comes from its complex and large search space.
Although the unconstrained model of modern portfolio theory contributed by Markowitz [1]
states that PO can be solved using a quadratic programming method, realistic constraints
make the problem NP-hard [2]. Therefore, the experience of studying the PO may help in
other difficult optimization tasks holding similar properties.

To solve this complex problem, evolutionary algorithms (EAs) are frequently applied.
By assigning different weights to each objective, PO can be addressed in a single-objective
form. However, considering its natural bi-objective formulation, researchers have paid in-
creasing efforts on methods using multi-objective evolutionary algorithms (MOEAs). Some
domination-based MOEAs, such as MOGA, PAES, SPEA2 and NSGA-II, have been as-
sessed on PO benchmarks [3, 4, 5, 6], or applied on practical PO applications [7, 8]. In addi-
tion, several multi-objective variants of swarm intelligence methods, namely non-dominated
sorting multi-Objective particle swarm optimization (NS-MOPSO) [9], multi-objective bac-
teria foraging optimization (MOBFO) [10], and multi-objective co-variance based artificial
bee colony (M-CABC) [11], have been introduced to the PO literature in the recent years.
However, only a few PO researchers have paid attention to MOEA based on decompo-
sition (MOEA/D) [12, 13, 14]. This powerful decomposition-based MOEA has not been
well-discussed on the PO yet.

Recently, researchers have paid attention to Lévy Flight (LF) for solving hard opti-
mization problems. LF is a special random walk, consisting of short motions as well as
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long trajectories. Prior studies have shown the strong search capability of this mutation
method [15, 16]. In this thesis, I propose a method named MOEA/D-Lévy, which injects LF
into MOEA/D (Chapter 3), and assess it on PO with unit constraint. This modification
is motivated by the efficient global search performance of LF. As one of the main challenges
in PO is the high-dimensionality of the search space, the expected global search capability
of LF can overcome this difficulty during optimization.

The experiments include a comparison with literature methods and a comparison with
mutations based on different probability distributions. The results of six evaluation metrics,
as well as a statistical test on all five datasets in a frequently used PO benchmark in
OR Library [17], indicate that this method outperforms the comparison methods in most
cases (Section 4.2). Additionally, I use an experiment to show how the addition of LF
contributes to the optimization process (Section 4.3). Fig. 1.1 illustrates this contribution,
by showing the population of five methods on the objective space at the 10th generation
when optimizing for the Nikkei dataset. It is interesting to notice that at the very beginning
of optimization the proposed method, represented by circles, can achieve a relatively good
solution set compared to other literature methods. This may be caused by a compound
factor of LF and the repair method, as well as the characteristics of the PO problem. I also
provide another two experiments to show further evidence on this finding (Section 4.4 and
Section 4.5).

The main contributions of this study include the comprehensive assessment of multiple
algorithms, as well as analysis and explanation showing that LF well controls the balance
between local search and global search, and utilizes the structural information of the problem
when solving the PO. Based on the conclusion of this study, one may further improve the
proposed algorithm, or apply it into practical use after a proper effort.

To my best knowledge, no research has applied LF into MOEA/D in the PO litera-
ture. The code and data used for the experiments in this thesis are available at a public
repository1.

1https://github.com/Y1fanHE/po with moead-levy
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Fig. 1.1: Population of different methods for the Nikkei dataset at the 10th generation. The
proposed method (MOEA/D-Lévy) quickly explores a larger area of the objective space.
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Chapter 2

Background

2.1 Portfolio Optimization

2.1.1 Modern Portfolio Theory

It is not hard to realize the importance of diversification during the investment, as the old
phrase “Don’t put all your eggs in one basket.” The portfolio is an implementation of this
idea, allocating capital into multiple assets. Fig. 2.1 provides an example of a portfolio on
four stocks. The whole pie represents all capital and the rate in the sectors represents invest
rate on the corresponding assets (e.g. 30% of the capital has been allocated into Google
stock).

The modern portfolio theory (MPT) proposed by Markowitz [1] provides a guideline to
select a portfolio. This theory assumes that, for an investor, the expected portfolio return
is a desirable thing and the variance of portfolio return (or risk) is an undesirable thing.
In other words, the expected portfolio return should be maximized while the variance of
portfolio return should be minimized. Furthermore, in MPT, the return of i-th asset is
modeled as a random variable Ri with expected value E(Ri) and variance V (Ri), and
a portfolio R is considered as a linear combination of multiple assets in (2.1), where wi

represents the invest rate of i-th asset. As the expected value of a weighted sum is the
weighted sum of expected values, we have the expected portfolio return in (2.2). The risk
of a portfolio is computed as the variance of a weighted sum. It can be expressed in (2.3)
using co-variance between two assets σij = E{[Ri − E(Ri)][Rj − E(Rj)]}.

R = w1R1 + w2R2 + · · ·+ wnRn (2.1)

E(R) = w1E(R1) + w2E(R2) + · · ·+ wnE(Rn) (2.2)

V (R) =
n∑

i=1

n∑
j=1

wiwjσij (2.3)
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Fig. 2.1: A sample portfolio on four assets

2.1.2 Unconstrained Portfolio Optimization Problem

This thesis deals with the PO model based on MPT. In this unconstrained PO model, the
first objective return in (2.4) is being maximized, while the second objective risk in (2.5) is
being minimized. w = (w1, w2, . . . , wn) is a vector representing the invest ratios of n assets.
ri is the expected return rate of i-th asset, and σij is co-variance between the return rate
of i-th asset and j-th asset. It is interesting to notice that this“ unconstrained”problem
includes two constraints, mathematically speaking. The first constraint in (2.6) requires to
allocate all of the capital during the investment. This is usually represented as the sum of
investments being equal to one (unit constraint). The second constraint in (2.6) indicates
that no short selling is allowed during the investment.

max
w

E =
n∑

i=1

wiri (2.4)

min
w

V =

n∑
i=1

n∑
j=1

wiwjσij (2.5)

subject to,

n∑
i=1

wi = 1 (2.6)

0 ≤ wi ≤ 1 (2.7)
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2.2 Multi-Objective Optimization Problem

2.2.1 Definition

One may easily realize that there are more than one objectives in unconstrained PO
(Section 2.1.2). This problem can be categorized into multi-objective optimization prob-
lem (MOOP). A MOOP can be defined as an optimization task which contains more than
one conflicting objectives. Here, ”conflicting” means that there is no such a solution holding
optimal values of all objectives. Consider the following minimization examples.

f(x) = x2, g(x) = (x− 2)2, h(x) = x, subject to x ≥ 0

• For function f(x), the minimum can be achieved at x = 0.

• For function g(x), the minimum can be achieved at x = 2.

• For function h(x), the minimum can be achieved at x = 0.

Thus, if one is going to minimize f(x) and g(x) at the same time, this optimization
task is a MOOP, for the minimum of two objectives cannot be achieved at the same time.
However, if one is to minimize f(x) and h(x), as both objectives hold the minimum x = 0,
this task is not a MOOP. In other words, by minimizing one of the objectives, the other
objective can be minimized simultaneously.

Mathematically, a minimization MOOP with M objectives can be defined as follows,
where x is a design vector on the n-dimensional decision space, Ω represents the feasible
region of the problem. As the objective f(x) is a vector, MOOP is sometimes called vector
optimization problem.

min
x

f(x) = {f1(x), f2(x), . . . , fM (x)} (2.8)

x = (x1, x2, . . . , xn) ∈ Ω (2.9)

2.2.2 Domination and Pareto Front

In a single-objective optimization problem (SOOP), it is easy to compare two candidates,
by taking a subtraction on their objective values. However, in a MOOP, the existence of
multiple objectives make the comparison harder. Consider an example of house renting
with two objectives to be minimized, the price per month and distance from the university.
For house A, it costs 45,000 Yen per month and 300 meters away from the university. B
costs 23,000 Yen per month but 2,000 meters away from the university. C costs 60,000 Yen
per month and 1,500 meters from the university. It is obvious that a rational person should
choose A rather than C because it is cheaper and closer to the university. However, when
considering A and B, there is no winner. B is 22,000 Yen cheaper than A, but A is 1,700
meters closer to the university. Thus, people who do not care about money may prefer A,
but others may prefer B.

6
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Fig. 2.2: An intuition of domination and Pareto Front

The above case can be expressed mathematically using domination. The mathematical
definition of domination in a M -objective minimization MOOP is as follows. The symbol
“≺” is read as “dominates”, i.e., “f(x) ≺ f(y)” is read as f(x) dominates f(y).

f(x) ≺ f(y) ⇔∀m = 1, . . . ,M, fm(x) ≤ fm(y) ∧
∃m = 1, . . . ,M, fm(x) < fm(y)

(2.10)

In a minimization SOOP, the optimal can be defined as the solution(s) which are non-
larger than any other feasible solutions. Similarly, optimal in a MOOP can be defined as
solutions that are non-dominated by any other feasible solutions. This definition can be
mathematically described as follows, where Ω is the feasible region and PF (Ω) is optimal
solutions of this feasible region. Such a set of optimal solutions is named as Pareto Front.
Such an optimal solution on the Pareto Front is called Pareto optimal.

PF (Ω) = {ω ∈ Ω | {ω′ ∈ Ω | ω′ ≺ ω} = ∅} (2.11)

Fig. 2.2 provides an example of domination and Pareto Front. In the minimization
problem in this graph, we have C dominates A. A and B are non-dominated by each other.
In addition, C is one of the Pareto optimal in this feasible region.

2.2.3 Difficulties in Multi-Objective Optimization Problem

A MOOP is usually considered more difficult than a SOOP for the following difference [18].
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• Two goals vs. one goal: In a SOOP, the solution set is required to converge as
close as possible to the true optimal. However, in a MOOP, despite convergence, the
solution set is also required to hold a good diversity to well estimate the whole Pareto
Front.

• Two spaces vs. one space: It is important to notice that one is dealing with two
spaces, decision space, and objective space, in a MOOP, especially when considering
diversity. This diversity can be a requirement in both two spaces. Additionally, there
is no need for diversity in these two spaces to be matched.

2.3 Multi-Objective Evolutionary Algorithm based on De-
composition

2.3.1 Overview

Researchers have come up with a series of MOEAs. This group of optimization methods
can achieve a set of estimated Pareto optimal solutions in one single run. The first MOEA
may be vector evaluated genetic algorithm (VEGA) [19]. In VEGA, the whole population
is randomly divided into several equal-sized partitions, and each partition is evaluated
with one individual objective function (e.g. for a bi-objective problem, the population will
be divided into two equal-sized sub-populations, one is evaluated with the first objective,
and the other is evaluated with the second objective). During the reproduction process,
offspring are generated based on parent candidates from the same partition. This algorithm
allows one to achieve trade-off solutions in a few generations, but after a large generation of
evolution, the solution set usually converges to the best individuals for each objective. The
main reason is that this method only considers the corresponding objective for a solution
during the evaluation. However, the rest of the objectives should not be ignored in the
sense of MOOP.

Since then, MOEA researchers have not made too much progress until the concept
of domination was introduced to design MOEAs in Goldberg’s work [20]. Based on his
suggestion, researchers have developed many different implementation of MOEAs, such as
multi-objective GA (MOGA) [21], non-dominated sorting GA (NSGA) [22], niched-Pareto
GA (NPGA) [23], strength Pareto EA (SPEA) [24], Pareto archived evolutionary strategy
(PAES) [25] and NSGA-II [26].

Take NSGA-II as an example. This algorithm first assigns ranks to every solution in
the population using a domination-based method called fast non-dominated sorting. As
shown in Fig. 2.3, the first rank contains non-dominated solutions in the population. The
second rank contains non-dominated solutions of the population excluding the first rank.
Thus, the solutions with a lower rank dominate those with a higher rank. Then, in order
to keep diversity, NSGA-II assigns crowding distance to the solutions with the same rank.
This distance is computed as the sum of the distance between the two closest solutions to
the current solution, in terms of each objective (i.e., show in Fig. 2.4). A partial order,
which prefers firstly a lower rank and then a larger crowding distance only when the ranks
are the same, is applied in both binary tournament selection and elite preservation process.
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However, this algorithm may not perform a good diversity when addressing some hard
problems, as the partial order prefers convergence first rather than diversity. One example
of this limitation was reported in Fukumoto’s study [27].

In 2007, Zhang proposed a multi-objective evolutionary algorithm based on decomposi-
tion (MOEA/D) using the concept of decomposition rather than domination [28]. Generally,
decomposition is a technique transforming an entire, large and complex problem to several
partial, small and simple problems, and thus provides efficiency. In Section 2.3.2 and
Section 2.3.3, several decomposition methods and MOEA/D will be introduced.

2.3.2 Decomposition

Decomposition is a classical method to solve a MOOP, transforming a vector optimization
task to a scalar optimization task. Considering the following example. To implement
a decomposition, one simple approach is to compute the linear combination of original
objectives as a new optimization problem. This new problem is usually called sub-problem.

minf(x) = {f1(x), f2(x)}

f1(x) = x2, f1(x) = (x− 2)2, x ≥ 0

• Sub-problem 1: s1(x) = 0.1 · f1(x) + 0.9 · f2(x) = x2 − 3.6x+ 3.6. The minimum is
achieved at x = 1.8.

• Sub-problem 2: s2(x) = 0.5 · f1(x) + 0.5 · f2(x) = x2 − 2x + 2. The minimum is
achieved at x = 1.

• Sub-problem 3: s3(x) = 0.8 · f1(x) + 0.2 · f2(x) = x2 − 0.8x+ 0.8. The minimum is
achieved at x = 0.4.

One may find that by using different weight combinations, the optimal of sub-problem
is different. By using multiple weight combinations, one can achieve a set of Pareto opti-
mal. Several frequently used decomposition approaches will be introduced in the following
paragraphs.

Weighted Sum Approach

The example above applies the weighted sum approach. A mathematical expression (in
minimization case) of this method is present as follows, where λ is a M -dimensional weight
vector. As the weighted sum approach decomposes Pareto Front into tangent points, it
cannot achieve all Pareto optimal if the front does not hold convexity.

min
x

gws(x | λ) =
M∑

m=1

λmfm(x) (2.12)

λ = (λ1, . . . , λM ), λ1 + · · ·+ λM = 1 (2.13)
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Weighted Tchebycheff Approach

Another frequently used method is the weighted Tchebycheff approach. This approach
decomposes the Pareto Front into the intersection of the front and a straight line determined
by a weight vector λ and a reference point (utopia point) z∗, as shown in Fig. 2.5. Thus,
by using this approach, all Pareto optimal can be retrieved. The mathematical expression
of the weighted Tchebycheff approach (in minimization case) is present as follows.

min
x

gte(x | λ, z∗) = max
m=1,...,M

{λm|fm(x)− z∗m|} (2.14)

λ = (λ1, . . . , λM ), λ1 + · · ·+ λM = 1 (2.15)

z∗ = (z∗1 , . . . , z
∗
M ), z∗m = min{fm(x)} (2.16)

Normal Boundary Intersection style Tchebycheff Approach

Normal Boundary Intersection style (NBI-style) Tchebycheff approach [12] is a variant of
the weighted Tchebycheff approach. In this method, the reference point z∗ is a point in the
Convex Hull of Individual Minima (CHIM) rather than the utopia point. Correspondingly,
the weight vector λ in this method is the normal vector of CHIM. In a bi-objective opti-
mization problem, CHIM is the straight line connecting two extreme points of the feasible
region. The mathematical expression of the NBI-style Tchebycheff approach in the bi-
objective minimization case is present as follows, where F 1 and F 2 are two extreme points,
and a is a parameter between 0 and 1. Similar to the weighted Tchebycheff approach, the
NBI-style Tchebycheff approach also decomposes the Pareto Front into the intersection of
the front and the straight line (shown in Fig. 2.6).

min
x

gtn(x | λ, z∗) = max
m=1,2

{λm(fm(x)− z∗m)} (2.17)

λ = (λ1, λ2), λ1 = |F 1
2 − F 2

2 |, λ2 = |F 1
1 − F 2

1 | (2.18)

z∗ = a · F 1 + (1− a) · F 2 (2.19)

All three approaches can only achieve one optimal at once. To retrieve multiple Pareto
optimal, a set of weight vectors (i.e., for weighted sum and weighted Tchebycheff approach)
or reference points (i.e., for NBI-style Tchebycheff approach) are required. Additionally,
this set of vector or points should be uniformly distributed in order to achieve an optimal
set with good diversity. The methods to generate such a set of vectors {λ(1), . . . ,λ(N)} or
points {z∗(1), . . . , z∗(N)} are present as follows.

λ(i) = (λ
(i)
1 , . . . , λ

(i)
M ), λ(i)

m ∈
{

1

H
, . . . ,

H

H

}
(2.20)

z∗(i) = a(i) · F 1 + [1− a(i)] · F 2, a(i) =
N − i

N − 1
(2.21)
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Algorithm 1 Original MOEA/D using weighted Tchebycheff approach

1: Generate a set of weight vectors {λ(1), . . . ,λ(N)};
2: Determine neighbor;
3: Initialize population {x(1), . . . ,x(N)};
4: Compute reference point z∗;
5: while stopping criteria do
6: for x(i) in population do
7: Select parents from neighbor of x(i);
8: Reproduce an offspring y by GA operator;
9: Update reference point z∗;

10: for x(p) in neighbor of x(i) do
11: if gte(y | λ(p), z∗) ≤ gte(x(p) | λ(p), z∗) then
12: Set x(p) = y;
13: end if
14: end for
15: end for
16: end while

2.3.3 Procedure of the Algorithm

As shown in Section 2.3.2, to retrieve a set of different Pareto optimal, one can try to solve
multiple sub-problems. By applying single-objective EA (SOEA), one can retrieve a set of
non-dominated solutions, however, in multiple runs.

MOEA/D provides a framework which can maintain the non-dominated set in one single
run by defining neighbor between solutions. In MOEA/D, one individual candidate serves
as the solution of one sub-problem (e.g. x(1) is the solution of sub-problem 1, x(2) is the
solution of sub-problem 2). These sub-problems are defined by different weight vectors.
If the distance between two vectors is close, the parameter (or the property) of the sub-
problems are close as well. The neighbor of a sub-problem is the sub-problems determined
by closest weight vectors to its corresponding vector. Similarly, the neighbor of a solution is
a group of solutions which are corresponding with neighbor sub-problems. A good solution
of a sub-problem should hold a good performance in terms of its neighbor sub-problems
as well. Thus, though only one individual is corresponding with one sub-problem, the
algorithm can make use of its neighbor during the reproduction process. In MOEA/D, the
parents, which are used during generic operations, are selected from the neighbor solutions.
In addition, the generated offspring can be used to update neighbor solutions as well.

What is more, the applying weighted Tchebycheff approach, the utopia point of the
feasible region is required. However, in MOEA/D, the algorithm uses the utopia point of
the population instead of that of the feasible region. Once a better offspring is searched,
this utopia point will also be updated during the evolutionary process.

The entire algorithmic description of MOEA/D is present inAlgorithm 1 (i.e., weighted
Tchebycheff approach is used as the decomposition method).
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2.4 Lévy Flight

2.4.1 Definition

Lévy Flight is a special random walk whose individual steps are taken from a heavy-tailed
distribution. Thus, LF is a random process combining short motions and long trajectories.
This property helps escape from local optimal, and thus improves the performance in an
optimization task.

Fig. 2.7 illustrates the probability density function (PDF) of Cauchy distribution (i.e.,
an example of heavy-tailed distribution). Fig. 2.8 shows a comparison of a 100-step random
walk in two-dimensional space using standard normal distribution and Cauchy distribution.
Both are started at point (0, 0). The search area of the random walk using Cauchy distri-
bution is much larger than the random walk using the standard normal distribution.

LF can be expressed in the following mathematical formulation, where x(t) represents
the position of a point at time t, and ξ is a random variable with a probability density of P .
In this thesis, the heavy-tailed distribution applied in LF is named as symmetrical stable
distribution. An introduction of this group of distributions is provided in Section 2.4.3.

x(t) = x(t−1) + ξ (2.22)

ξ ∼ P (2.23)

2.4.2 Lévy Flight Foraging Hypothesis

When looking at random searches from the view of biological encounters, researchers have
argued that creatures have evolved to exploit LF, for it optimizes random searches. This
statement is the so-called Lévy Flight Foraging Hypothesis. The following paragraphs
provide an interpretation of this hypothesis by recalling Viswanathan’s review study [15].

Biological encounters occur because living organisms need to interact with other indi-
viduals, both intra-species (e.g. mating) and inter-species (e.g. predation). Therefore, the
encounter rate may serve as a reasonable evaluation of the fitness of the organisms. For
instance, with a low encounter rate, an organism cannot access the food source efficiently,
and thus holds a low fitness in the sense of evolutionary nature.

Furthermore, it is easy to realize that this encounter rate can be determined by multiple
factors, and within them, search strategies may be the most important one. Viswanathan’s
study states that without the prior information of the randomly and sparsely located targets,
searching by LF tends to be a good choice through the analytical results. The LF described
in the same study is a random walk based on the following step length distribution.

P (ξ) ∼ ξ−µ, 1 < µ ≤ 3 (2.24)

In the same study, the author has also provided a review on empirical studies showing
that living organisms perform LF or LF-like searches during foraging motion, including
microorganisms (amoeba), fruit flies, honey bees, sharks, sea turtles, etc. All these examples
may imply LF as an efficient search strategy which is derived from biological evolution.
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2.4.3 Symmetrical Stable Distribution

The analytical form of symmetrical stable distributions can only be found for several special
cases. A general form of this distribution is given in Mantegna’s work [29]. In this formula,
β is index parameter (0 < β ≤ 2), and γ is a scaling parameter which is usually set to 1 for
convenience. One may simplify the formula to (2.26) by taking the first term of its power
series expansion [30].

L(x) =

∫ ∞

0
exp(−γqβ) cos(qx)dq (2.25)

L(x) ∼ |x|−1−β, |x| → ∞ (2.26)

One of the important properties of the symmetrical stable distribution is that, it holds
an infinity variance when 0 < β < 2, and an undefined expectation value when 0 < β < 1.
Therefore, it can be applied to search even an unbounded space when 0 < β < 1, as the
average position does not exist [30].

2.4.4 Implementation of Lévy Flight

Several prior studies have provided the computer simulation methods to generate LF, how-
ever, approximately.

Mantegna’s Algorithm

Mantegna’s algorithm [29] generates random variables from a symmetrical stable distribu-
tion with 0.3 ≤ β ≤ 1.99, using the following formula, where Γ is the Gamma function.

Lévy(β) ∼ u

|v|1/β
, u ∼ N(0, σ2

u), v ∼ N(0, σ2
v) (2.27)

σu =

{
Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2

}1/β

, σv = 1 (2.28)

Gutowski’s Algorithm

Gutowski’s algorithm [30] produces a random sequence distributed following (2.29). It can
be simply implemented by applying the formula in (2.30) where u is drawn from a uniform
distribution between 0 and 1. This algorithm can be used for all β ∈ (0, 2), however, it
simulates a right-skewed distribution rather than the symmetrical one (i.e., Lévy(β) ≥ 0).

L(x) ∼ C

(1 + x)1+β
(2.29)

Lévy(β) ∼ u
− 1

β − 1 (2.30)

In this thesis, as the problem is real-coded, I apply Mantegna’s algorithm, for it can
easily generate negative values from the symmetrical property.
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2.5 Related Works

2.5.1 Variants of MOEA/D

Recently, researchers have tried to combine MOEA/D with mutation methods in other
meta-heuristics to enhance its search capability, such as particle swarm optimization (PSO),
differential evolution (DE), and ant colony optimization (ACO) [31, 32, 33]. MOEA/D-
DE [32] injects the DE operator and polynomial mutation operator into MOEA/D. The
DE operator is present as follows, where x(i), x(j) and x(k) are parents, y is offspring, and
rand is a random number between 0 and 1.

y =

{
x(i) + F · (x(j) − x(k)), rand < CR

x(i), rand ≥ CR
(2.31)

The original DE operator includes a DE mutation step and a crossover step with the
original parent. However, the authors of MOEA/D-DE have suggested to set CR to 1.0
to deal with complicated problems, which means only the DE mutation step will be imple-
mented. Additionally, they have designed a diversity keeping strategy, including an upper
limitation for updating neighbor, and a small probability to select parents from the whole
population rather than the neighbor. The parent selection scheme of MOEA/D-DE has
been well discussed by Tanabe [34]. This study has reported that using curr/1 (i.e., select
current individual as x(i)) and WR (i.e., x(i), x(j), x(k) can be the same individual) or
WPR (i.e., x(j) and x(k) cannot be same, but either can be the same as x(i)) outperforms
other settings.

2.5.2 Portfolio Optimization Using MOEAs

Since the genetic algorithm was firstly introduced into PO literature in a multi-objective
form in 1993 [35], prior studies have assessed a large group of MOEAs. One frequently used
benchmark in these assessments is the OR library [17], which contains five PO datasets,
namely Hangseng, DAX 100, FTSE 100, S&P 100 and Nikkei. VEGA, Fuzzy VEGA,
MOGA, SPEA2, and NSGA-II have been compared on Hangseng with constraints [3]. An-
other two comparison studies using the same dataset have reported that NSGA-II outper-
forms PESA, PAES and APAES [4, 5]. NSGA-II, PESA, and SPEA2 have also been assessed
on DAX 100 with constraints [6]. The results have shown that NSGA-II and SPEA2 hold
the best average performance. In Branke ’s study [36], envelope-based MOEA has been
assessed on Hangseng, S&P 100, and Nikkei with realistic constraints.

While EAs are modeled from the evolutionary process, swarm intelligence (SI) is a
group of algorithms based on the self-organization of individuals. A survey has reported an
increasing attention on using MOEAs with SI to solve PO [37]. MOPSO has been compared
with PSFGA, SPEA2, and NSGA-II on Hangseng [38]. The results have indicated that
MOPSO outperforms the other three methods significantly. NS-MOPSO, MOBFO, and
M-CABC have been proposed and assessed on all five PO datasets in the OR library with
constraints [9, 10, 11].

Despite performance assessment using benchmarks, researchers have also shown strong
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interest in developing MOEAs for practical PO. NSGA-II, SPEA2, and IBEA have been
compared on solving PO with financial data in the Venezuelan market [7]. Five domination
based MOEAs have been tested on cardinality constrained PO with a dataset containing
over 2000 assets [8]. Variants of MOPSO have been proposed to solve the constrained PO
with a realistic dataset [39, 40]. Several studies have focus on designing specific initialization
methods, problem guided mutation and constraint handling techniques on PO [41, 42, 43,
44].

While most of the prior studies are based on domination methods, few researchers
have focused on solving PO with decomposition-based MOEAs. Zhang ’s study [12] has
proposed a new decomposition method and used MOEA/D-DE to solve a constrained PO.
The experimental results show that MOEA/D-DE performs better than NSGA-II-DE. A
new weight vector generation approach to achieve an evenly distributed vector set has been
proposed by Zhang [13]. In Zhou’s study [14], researchers have combined a data envelopment
analysis technique with MOEA/D and assessed this method on ZDT1-3 benchmarks as well
as PO application on 10 stocks. The results show that the proposed method can outperform
MOEA/D. Thus, performance assessment and application of MOEA/D on PO have not been
well discussed so far.

In Zhang ’s study [12], researchers have reported that the original weighted Tcheby-
cheff decomposition cannot achieve an evenly distributed optimal set, for the scale of two
objectives are usually different in PO. To solve this problem, they have proposed the NBI-
style Tchebycheff decomposition approach (i.e., described in Section 2.3.2). To generate
offspring, they have used the DE mutation operator. In that work, the three parents are
randomly selected from the neighbor of the current individual. What is more, although
original MOEA/D-DE [32] uses diversity keeping strategies, the usage of such strategies
has not been reported in Zhang’s study.

2.5.3 Lévy Flight and Optimization

One biological application of LF is the LF foraging theory [15] in Section 2.4.2. This theory
states that creatures have evolved to use LF during foraging for its optimized random search
capability. Despite this natural example, LF has been applied in optimization problems in
various areas such as physics, biology, statistics, finance, and economics [45].

In addition, researchers have developed and enhanced metaheuristics using LF. Cuckoo
Search (CS) [46] is an efficient optimization method using LF to implement a global search.
Researchers have also used LF to enhance PSO and ABC [16, 47, 48, 49]. In Zhang’s
study [50], a modified CS has been injected into MOEA/D to solve a spectrum allocation
problem. However, the mis-setting of evaluation times (i.e., they do not set an equal evalu-
ation time for all algorithms in the experiment) and the unclear algorithm description (i.e.,
they do not report some details in the numerical process when describing algorithm proce-
dure) may confuse other researchers when understanding and implementing this method.
Thus, there remains a proper assessment of MOEA/D injected with LF. Some studies have
applied the single-objective form of CS to solve PO [51, 52, 53]. However, to my best
knowledge, there is no research injecting LF into MOEA/D in the PO literature.
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Chapter 3

Proposed Method

3.1 Lévy Flight Mutation

The LF mutation in the proposed method is similar to the DE mutation (i.e., described in
Section 2.5), utilizing the difference between individuals. However, the scaling factor in
LF mutation is a vector generated from heavy-tailed distribution rather than a constant.
What is more, LF mutation only uses two parents, while DE mutation uses three parents.
The formulation of this mutation method is as follows, where x(i) and x(j) are parents, y
is offspring, ⊕ means entry-wise multiplication, α0 is a constant parameter, and Lévy(β)
is a vector where each component is generated using Mantegna ’s algorithm [29] (i.e.,
0.3 ≤ β ≤ 1.99).

y = x(i) + α0 · (x(i) − x(j))⊕Lévy(β) (3.1)

There are several reasons motivating this modification. First, DE mutation utilizes
the difference between individuals. This difference is generally considered to be larger at
the beginning but smaller at the end. Thus, in the ending phrase, DE mutation usually
implements local search. By introducing LF, the small chance of implementing global
search can help to escape from the local optimal. Second, the performance of DE mutation
depends on the diversity of the population. In MOEA/D, when there is a high-quality
offspring generated, multiple neighbors will be updated to exactly the same value (i.e.,
same as the generated offspring). This may cause the diversity of the population decreasing
rapidly. However, by introducing LF, the mutation can hold a good performance even when
the population does not hold a good diversity.

3.2 Repair Method

The offspring generated by LF mutation may not satisfy the constraints in (2.6) and (2.7).
Thus, it is necessary to apply a proper constraint handling technique after reproduction.
In this research, a general repair method following the description in Algorithm 2 has been
applied. These repair steps will first set negative variables to 0, and then scale the entire
vector (offspring) so that the summation of all variables equals to 1.
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Algorithm 2 Repair Method

1: for yi in offspring y do
2: if yi < 0 then
3: Set yi = 0;
4: end if
5: end for
6: Compute s =

∑
yi;

7: for yi in offspring y do
8: Set yi = yi/s;
9: end for

3.3 Proposed MOEA/D-Lévy Algorithm

An entire algorithmic description of the proposed method is presented in Algorithm 3.
In the following chapters, the proposed method will be named as MOEA/D-Lévy for con-
venience. In MOEA/D-Lévy, the population is initialized using a uniform distribution
between 0 and 1. When selecting parents, the current individual is selected as xi, while
xj is randomly selected from the neighbor of the current individual. MOEA/D-Lévy in-
jects LF mutation and polynomial mutation operators into MOEA/D. When an offspring
is generated, the algorithm will implement repair steps to satisfy constraints. NBI-style
Tchebycheff decomposition approach (i.e., described in Section 2.3.2) has been applied to
deal with different scale of two objectives in PO. I have also applied the diversity keeping
strategies proposed in Li ’s study [32] (i.e., described in Section 2.5.1), including a small
proportion 1− σ to select parents from the whole population (i.e., described in Algorithm
3, Line 6 to 10), where rand(0, 1) means a random number generated from uniform dis-
tribution with range 0 to 1, as well as an upper limitation nr for updating neighbor (i.e.,
described in Algorithm 3, Line 20 to 23).

Compared with the original MOEA/D algorithm [28], the main modification of the
proposed method includes NBI-style Tchebycheff decomposition (the original MOEA/D
applies Tchebycheff method), diversity keeping strategies (the original MOEA/D does not
apply it), and reproduction method based on LF and polynomial mutation (the original
MOEA/D applies GA operator).

20



Algorithm 3 Proposed MOEA/D-Lévy

1: Determine neighbor;
2: Initialize population {x(1), . . . ,x(N)};
3: Compute extreme points F 1,F 2;
4: while stopping criteria do
5: for x(i) in population do
6: if rand(0, 1) < σ then
7: Set B(i) as neighbor of x(i);
8: else
9: Set B(i) as population {x(1), . . . ,x(N)};

10: end if
11: Select parents from B(i);
12: Reproduce an offspring y by LF mutation and polynomial mutation;
13: Repair y to satisfy constraints;
14: Update extreme points F 1,F 2;
15: Set update counter nc = 0;
16: Re-arange B(i) in random order;
17: for x(p) in neighbor of B(i) do
18: if gtn(y | λ, z∗(p)) ≤ gtn(x(p) | λ, z∗(p)) then
19: Set x(p) = y;
20: Set nc = nc + 1;
21: if nc ≥ nr then
22: Break;
23: end if
24: end if
25: end for
26: end for
27: end while
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Chapter 4

Experiments

4.1 Experimental Method

4.1.1 Portfolio Optimization Benchmark

The benchmarks used are all five PO datasets in the OR library [17], containing 31, 85, 89,
98, and 225 assets from 1992 to 1997, respectively. A summary of the datasets is presented
in Table 4.1. For each dataset, the mean and standard deviation of the return rate of
all assets, and the correlation coefficient of all asset pairs are provided in this benchmark.
Additionally, Pareto Front for each dataset is approximated with 2000 points.

4.1.2 Evaluation Metrics

When evaluating MOEAs, it is important to consider both convergence and diversity per-
formance. Although there are several metrics assessing convergence, such as generation
distance (GD), and diversity, such as spacing (S), maximum spread (MS), spread (∆), a
recent trend in the literature is to assess the two performance at one time using overall
metrics, such as inverted generation distance (IGD) and hypervolume (HV). In this study,
all six metrics (i.e., GD, S, MS, ∆, IGD and HV) are applied. The calculation methods
of GD, S, MS, ∆ and HV are referred to Chapter 8 in Deb ’s book [18]. For IGD, I refer
to Coello ’s study [54] which first proposed the IGD metric. A smaller value in GD, S, ∆
and IGD indicates a better performance, while for MS and HV, a larger value represents a
better performance.

Table 4.1: A summary of the datasets used in experiments

Dataset Region Size Time Period

Hangseng Hongkong 31

1992∼1997
DAX 100 Germany 85
FTSE 100 U.K. 89
S&P 100 U.S. 98
Nikkei Japan 225
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• GD: d(v, P ∗) is the minimum Euclidean distance between a non-dominated solution
v and Pareto Front P ∗. ∑

v∈A d(v, P ∗)

|A|
(4.1)

• S: di is the minimum Manhattan distance between i-th non-dominated solution
and another one. √√√√ 1

N ′

N ′∑
i=1

(d̄− di)2 (4.2)

• MS: f i
m is the m-th objective of i-th non-dominated solution.√√√√ M∑

m=1

( max
i=1,...,N ′

f i
m − min

i=1,...,N ′
f i
m)2 (4.3)

• ∆: di is the Euclidean distance between two consecutive non-dominated solutions;
df and dl are the Euclidean distance between extreme solutions of Pareto Front and
boundary solutions of non-dominated set.

df + dl +
∑N

′−1
i=1 |di − d̄|

df + dl + (N ′ − 1)d̄
(4.4)

• IGD: d(v, A) is the minimum Euclidean distance between a solution v in Pareto Front
P ∗ and non-dominated set A. ∑

v∈P ∗ d(v, A)

|P ∗|
(4.5)

• HV: vi is the hypercube constructed with a reference point and i-th non-dominated
solution as the diagonal corners. To compute the reference point, the Nadir point of
solutions generated by all algorithms in the final generation will be used.

volume

N
′⋃

i=1

vi

 (4.6)
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4.1.3 Experimental Settings

Totally, there are four comparison experiments. In Experiment I, MOEA/D-Lévy is com-
pared with four other literature methods. This comparison aims to assess the performance
of the proposed method. In Experiment II, LF mutation is compared with three other mu-
tation methods based on different probability distributions. In this comparison, I show how
the long trajectories in LF contribute to the search power. Experiment III provides addi-
tional evidence for the explanation in Experiment II, by comparison on LF mutation with
different truncation. In Experiment IV, mutation methods based on normal distributions
with different variance are compared.

For Experiment I and II, both experiments are implemented with 51 repetitions. For
every single run, the values of the six metrics at the final generation are calculated. All
five datasets share the same parameter setting. The parameters are set as follows. For all
methods, population size and maximum generation are set to 100 and 1500. An early stop
criterion (convergence) is set when the variation of IGD is not larger than 1e-05 for 100
continuous generations. Neighbor size T , proportion σ to select parents from the neighbor
and upper limitation nr for updating neighbors in MOEA/D-based methods are set to
20, 0.9 and 2. These settings (i.e., T , σ and nr) are the same as Li ’s study [32]. The
parameter settings of the mutation methods that differentiate the compared algorithms
will be presented in Section 4.2 and Section 4.3. These parameters are fine-tuned by
a pre-experiment, using the Nikkei dataset. I perform 30 runs, stopping at the 300-th
generation, and choose the parameters that receive the best average IGD to be used in the
formal experiments. Fig. 4.1 shows an example for β parameter tuning on the proposed
algorithm.

For Experiment III and IV, both experiments are implemented with 51 runs. However,
only the IGD metric is calculated for every single run. Parameter settings for MOEA/D
framework are the same as the former two experiments, but in Experiment III, the maximum
generation is set to 100. The detailed reason for this parameter setting is stated in Section
4.4. Also, only Nikkei dataset is used in these two experiments.

The reference points used to compute HV in Experiment I and II are reported in Table
4.2. The numerical results of all four experiments are presented in the tables in the cor-
responding sections. The medians of the best algorithm in each metric are in bold font.
In addition, those best medians decorated with underlines indicate that the corresponding
algorithms perform better than algorithms with second best medians, through a Wilcoxon
Rank Sum Test with a significant level of 5%.

Table 4.2: Reference points (return, risk) used on five datasets

Dataset Reference Point

Hangseng (0.0026, 0.0048)
DAX 100 (0.0019, 0.0028)
FTSE 100 (0.0024,0.0028)
S&P 100 (0.0018,0.0031)
Nikkei (-0.0026,0.0017)
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Fig. 4.1: An example of parameter tuning on MOEA/D-Lévy

4.2 Experiment I: Comparison with Literature Methods

4.2.1 Parameter Settings

In this experiment, MOEA/D-Lévy and four comparison methods, namely MOEA/D-DEM,
MOEA/D-DE, MOEA/D-GA, and NSGA-II, are included. Among these five methods, four
are based on MOEA/D framework described in Li’s study [32] (i.e., a small proportion to
select parents from the whole population and an upper limitation for updating neighbors
are set), while the decomposition method applied is NBI-style Tchebycheff approach [12].
The selection method of all methods except the two GA-based algorithms is to select the
current visited individual as one of the parents and to randomly select the other individual
as the other parents (i.e., same as Li ’s study [32]). For MOEA/D-GA, all the parents
are randomly selected from neighbors or the whole population, and a binary tournament
selection is applied in NSGA-II. The mutation method in MOEA/D-Lévy has been described
in Line 12, Algorithm 3. In MOEA/D-DEM, the mutation is the same as Li ’s study [32]
(i.e., DE mutation and polynomial mutation). In MOEA/D-DE, the mutation method is
only based on DE mutation. This setting is applied in Zhang ’s study [12]. For two GA-
based algorithms, SBX crossover and polynomial mutation are applied. This setting is the
same as the original NSGA-II [26] and MOEA/D [28] algorithms. In Table 4.8, detailed
mutation methods in Experiment I are listed.

Following the pre-experimental tuning described in Section 4.1.3, I obtained the fol-
lowing parameter values. In MOEA/D-Lévy, α0 and β of LF mutation are set to 1e-05 and
0.3. In MOEA/D-DEM and MOEA/D-DE, scaling factor F of DE mutation is set to 1.3.
In MOEA/D-Lévy and MOEA/D-DEM, the mutation rate is set to 1/n (i.e., n is the size of
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dataset). In MOEA/D-GA and NSGA-II, the crossover rate is set to 0.7. In MOEA/D-GA,
the mutation rate is 0.05 and in NSGA-II, the mutation rate is 0.01.

4.2.2 Experimental Results

As an example, Fig. 4.2 shows IGD changing by generations on Nikkei in Experiment I (best
run of IGD). Fig. 4.3 illustrates the final population on the same dataset and experiment,
as well as a zoom-in. The final population of other datasets and experiments are shown in
Fig. 4.4. The results for each dataset are detailed as follows.

• Hangseng: MOEA/D-Lévy holds the best median in terms of MS, ∆ and IGD, while
MOEA/D-GA performs best on GD, S, and HV. Both methods show a statistical
significance compared with the methods holding the second-best median.

• DAX 100: MOEA/D-Lévy shows a statistically significant superiority in terms of
MS, ∆, IGD and HV, while MOEA/D-GA performs better in GD and S with a
statistical significance.

• FTSE 100: MOEA/D-Lévy shows a clear superiority on MS, ∆, IGD and HV, while
MOEA/D-GA and MOEA/D-DE perform best on GD and S, respectively.

• S&P 100: MOEA/D-Lévy holds the best median on ∆, IGD and HV. Especially,
on ∆ and HV, there is a significant difference between the second-best method.
MOEA/D-GA, MOEA/D-DE, and MOEA/D-DEM are the best method in terms
of GD, S, and MS, respectively.

• Nikkei: MOEA/D-Lévy performs best on ∆, IGD and HV. Especially, on ∆ and HV,
there is a significant difference between the second-best method. NSGA-II, MOEA/D-
DE, and MOEA/D-DEM are the best method in terms of GD, S, and MS, respectively.

In addition, it is hard to find a difference when considering the plots of the solution
distributions. On FTSE 100, MOEA/D-DE performs relatively worse on retrieving low-risk
portfolios (i.e., it has fewer solutions in the bottom left regions in Fig. 4.4c). On S&P 100
and Nikkei, the two GA-based algorithms only retrieve a part of the front (i.e., show in Fig.
4.4d and 4.4e). On Nikkei, the solution set retrieved by MOEA/D-DE is relatively narrow
and far from the Pareto Front (i.e., show in Fig. 4.4e).
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Fig. 4.2: IGD by generations on Nikkei in Experiment I
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Table 4.3: Numerical results on Hangseng in Experiment I

Metric
MOEA/D

NSGA-II
Lévy DEM DE GA

GD
Best 4.51E-06 4.21E-06 3.49E-06 1.74E-06 9.06E-06

Median 5.78E-06 7.26E-06 7.98E-06 2.29E-06 1.19E-05
Std. 8.78E-07 2.22E-06 1.18E-04 2.60E-07 1.34E-06

S
Best 1.56E-05 1.50E-05 8.51E-06 9.38E-06 3.94E-05

Median 2.06E-05 2.34E-05 1.80E-05 1.53E-05 4.92E-05
Std. 7.18E-06 9.07E-06 6.76E-06 5.71E-06 4.19E-06

MS
Best 9.13E-03 9.23E-03 9.00E-03 8.92E-03 9.06E-03

Median 8.96E-03 8.89E-03 8.54E-03 8.25E-03 8.63E-03
Std. 1.01E-04 1.98E-04 9.93E-04 3.16E-04 2.18E-04

∆
Best 2.47E-01 2.53E-01 2.33E-01 2.61E-01 4.48E-01

Median 2.64E-01 2.87E-01 2.87E-01 2.80E-01 4.94E-01
Std. 3.11E-02 3.99E-02 8.20E-02 1.40E-02 3.50E-02

IGD
Best 2.90E-05 2.99E-05 3.15E-05 2.98E-05 3.92E-05

Median 3.13E-05 3.50E-05 6.03E-05 7.54E-05 5.01E-05
Std. 2.75E-06 8.54E-06 2.44E-04 3.97E-05 1.55E-05

HV
Best 2.64E-05 2.64E-05 2.64E-05 2.64E-05 2.63E-05

Median 2.64E-05 2.63E-05 2.63E-05 2.64E-05 2.63E-05
Std. 9.76E-09 2.64E-08 2.21E-06 1.38E-08 1.31E-08

Table 4.4: Numerical results on DAX 100 in Experiment I

Metric
MOEA/D

NSGA-II
Lévy DEM DE GA

GD
Best 5.85E-06 7.11E-06 7.32E-06 1.83E-06 5.37E-06

Median 7.98E-06 9.53E-06 1.65E-05 2.78E-06 8.04E-06
Std. 1.11E-06 1.81E-06 9.27E-05 6.36E-07 1.99E-06

S
Best 2.76E-05 2.34E-05 1.64E-05 1.59E-05 2.27E-05

Median 3.25E-05 3.24E-05 2.98E-05 2.48E-05 4.34E-05
Std. 7.29E-06 7.37E-06 6.61E-06 5.68E-06 6.94E-06

MS
Best 8.13E-03 8.12E-03 8.36E-03 7.37E-03 7.83E-03

Median 7.77E-03 7.71E-03 7.40E-03 6.04E-03 7.20E-03
Std. 1.59E-04 2.31E-04 7.26E-04 3.70E-04 5.20E-04

∆
Best 3.88E-01 4.07E-01 3.60E-01 4.54E-01 5.70E-01

Median 4.07E-01 4.49E-01 4.36E-01 5.81E-01 6.68E-01
Std. 2.72E-02 3.79E-02 7.72E-02 3.65E-02 5.11E-02

IGD
Best 3.28E-05 3.62E-05 4.40E-05 7.20E-05 4.14E-05

Median 4.16E-05 4.90E-05 9.48E-05 1.54E-04 6.55E-05
Std. 7.87E-06 1.60E-05 9.39E-05 3.75E-05 3.34E-05

HV
Best 1.91E-05 1.90E-05 1.90E-05 1.91E-05 1.90E-05

Median 1.90E-05 1.90E-05 1.89E-05 1.84E-05 1.90E-05
Std. 1.16E-08 2.34E-08 1.08E-06 4.22E-07 4.44E-07
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Table 4.5: Numerical results on FTSE 100 in Experiment I

Metric
MOEA/D

NSGA-II
Lévy DEM DE GA

GD
Best 5.39E-06 6.32E-06 7.01E-06 2.84E-06 7.38E-06

Median 7.12E-06 9.58E-06 1.83E-05 5.05E-06 9.25E-06
Std. 7.30E-07 2.41E-06 1.55E-04 1.60E-06 9.51E-07

S
Best 1.59E-05 1.38E-05 9.87E-06 1.14E-05 2.39E-05

Median 2.09E-05 2.01E-05 1.72E-05 1.97E-05 2.99E-05
Std. 3.96E-06 4.54E-06 3.34E-06 5.10E-06 2.24E-06

MS
Best 5.85E-03 5.79E-03 5.74E-03 5.47E-03 5.67E-03

Median 5.54E-03 5.40E-03 5.15E-03 4.91E-03 5.45E-03
Std. 1.46E-04 1.93E-04 5.08E-04 4.19E-04 1.69E-04

∆
Best 4.06E-01 4.25E-01 4.21E-01 4.27E-01 5.47E-01

Median 4.33E-01 4.72E-01 4.51E-01 5.05E-01 6.06E-01
Std. 3.38E-02 3.06E-02 6.30E-02 6.88E-02 3.32E-02

IGD
Best 2.36E-05 2.90E-05 4.26E-05 4.07E-05 3.22E-05

Median 3.83E-05 5.31E-05 9.09E-05 8.76E-05 4.74E-05
Std. 1.08E-05 2.16E-05 1.47E-04 4.33E-05 1.38E-05

HV
Best 1.37E-05 1.37E-05 1.37E-05 1.37E-05 1.37E-05

Median 1.37E-05 1.37E-05 1.36E-05 1.34E-05 1.37E-05
Std. 5.72E-09 1.64E-08 1.36E-06 6.19E-07 8.35E-08

Table 4.6: Numerical results on S&P 100 in Experiment I

Metric
MOEA/D

NSGA-II
Lévy DEM DE GA

GD
Best 1.05E-05 1.13E-05 1.27E-05 3.20E-06 1.01E-05

Median 1.25E-05 1.75E-05 3.92E-05 5.02E-06 1.29E-05
Std. 1.64E-06 3.45E-06 7.64E-05 1.86E-06 1.42E-06

S
Best 2.08E-05 2.01E-05 1.72E-05 1.77E-05 2.51E-05

Median 2.51E-05 2.76E-05 2.31E-05 2.35E-05 3.58E-05
Std. 5.10E-06 5.26E-06 4.78E-06 5.06E-06 3.68E-06

MS
Best 7.72E-03 7.86E-03 7.60E-03 6.87E-03 7.29E-03

Median 7.44E-03 7.55E-03 7.23E-03 5.82E-03 6.57E-03
Std. 1.47E-04 1.61E-04 2.53E-04 4.35E-04 3.52E-04

∆
Best 3.29E-01 3.30E-01 3.29E-01 4.22E-01 5.37E-01

Median 3.45E-01 3.74E-01 3.66E-01 5.57E-01 6.48E-01
Std. 2.95E-02 3.37E-02 2.41E-02 3.88E-02 3.71E-02

IGD
Best 3.30E-05 3.30E-05 3.64E-05 4.88E-05 4.08E-05

Median 3.97E-05 4.35E-05 7.12E-05 1.36E-04 7.08E-05
Std. 9.23E-06 7.65E-06 4.16E-05 4.13E-05 2.21E-05

HV
Best 1.87E-05 1.87E-05 1.87E-05 1.87E-05 1.87E-05

Median 1.87E-05 1.86E-05 1.85E-05 1.79E-05 1.83E-05
Std. 1.51E-08 3.19E-08 4.79E-07 5.03E-07 3.13E-07
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Table 4.7: Numerical results on Nikkei in Experiment I

Metric
MOEA/D

NSGA-II
Lévy DEM DE GA

GD
Best 5.45E-06 5.10E-06 5.93E-05 9.95E-06 2.54E-06

Median 7.26E-06 8.06E-06 1.45E-04 3.31E-05 4.24E-06
Std. 1.16E-06 1.66E-04 7.09E-05 2.08E-04 2.01E-06

S
Best 1.28E-05 1.28E-05 5.99E-06 0.00E+00 1.05E-05

Median 1.76E-05 2.08E-05 1.15E-05 1.92E-05 1.45E-05
Std. 2.88E-06 5.77E-06 4.53E-06 9.72E-06 1.84E-06

MS
Best 4.09E-03 4.23E-03 4.29E-03 2.63E-03 3.36E-03

Median 3.93E-03 3.94E-03 2.96E-03 2.20E-03 2.88E-03
Std. 1.38E-04 5.39E-04 5.48E-04 4.65E-04 2.54E-04

∆
Best 3.94E-01 3.99E-01 3.17E-01 8.40E-01 6.09E-01

Median 4.34E-01 4.81E-01 5.58E-01 9.34E-01 6.81E-01
Std. 3.89E-02 9.05E-02 1.00E-01 3.54E-02 2.95E-02

IGD
Best 1.77E-05 1.90E-05 7.90E-05 1.77E-04 4.64E-05

Median 2.39E-05 2.73E-05 2.23E-04 2.41E-04 9.69E-05
Std. 1.15E-05 4.09E-04 6.95E-05 5.29E-04 3.67E-05

HV
Best 8.31E-06 8.29E-06 7.96E-06 7.87E-06 8.19E-06

Median 8.29E-06 8.26E-06 7.23E-06 7.54E-06 7.94E-06
Std. 1.59E-08 9.52E-07 3.43E-07 1.20E-06 1.08E-07
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Fig. 4.4: Final population on five datasets in objective space (Experiment I)
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4.3 Experiment II: Comparison with Other Distribution-based
Mutation Methods

4.3.1 Parameter Settings

In this experiment, mutation methods based on four probability distributions, namely Lévy-
stable distribution (LEVY), uniform distribution (UNIF), standard normal distribution
(NORM) and constant (CONST) are compared to show the effectiveness of LF. Among
these four methods, MOEA/D framework and selection method in Li ’s study [32] are
applied. The mutation operators of these methods are similar to DE mutation, but the
scaling factors are drawn from the probability distributions mentioned above. In addition,
two parents are selected in LEVY, while three are selected in the other three mutation
methods. As the goal of this experiment is to show how LF contributes to optimization, no
polynomial mutation is applied in all methods. Table 4.9 presents the detailed formula of
the mutation methods in Experiment II.

Following the pre-experimental tuning method described in Section 4.1, I obtained the
following parameter values. Parameter C is set to 1.0 and 0.5 and in UNIF and NORM,
respectively. The parameters of LF mutation in LEVY are the same as that of MOEA/D-
Lévy in Section 4.2. The parameters of CONST is the same as that of MOEA/D-DE
in Section 4.2. It is interesting to notice that CONST and MOEA/D-DE are the same
method.

4.3.2 Experimental Results

• Hangseng: NORM performs best on GD, MS, IGD, and HV. CONST holds the best
S, and UNIF holds the best ∆.

• DAX 100: NORM is the best method in terms of five metrics except for S, especially
on GD, MS and IGD, the statistical test shows a significant difference. For the S
metric, CONST performs best.

• FTSE 100: LEVY performs best on MS, ∆, IGD and HV. On MS and IGD, it shows
a statistical significance in the comparison with NORM which holds second place.
NORM performs best on GD, while CONST performs best on S.

• S&P 100: UNIF holds the best GD and S, while NORM performs best on the rest
metrics. LEVY holds the second place on MS, IGD, and HV, and shows a comparable
performance.

• Nikkei: LEVY shows a significant superiority in terms of GD, MS, ∆, IGD and HV.
For S, CONST performs best.

In addition, it is also hard to find a difference when considering the plots of the solu-
tion distributions. On FTSE 100, CONST performs relatively worse on retrieving low-risk
portfolios (i.e., it has fewer solutions in the bottom left regions in 4.5c). On Nikkei, the
solution set retrieved by CONST is relatively narrow and far from the Pareto Front (i.e.,
show in and 4.5e).
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Table 4.8: A summary of mutation methods in Experiment I

Method Mutation Formula

MOEA/D-Lévy
y = x(i) + α0 · (x(i) − x(j))⊕Lévy(β)

polynomial mutation

MOEA/D-DEM
y = x(i) + F · (x(j) − x(k))

polynomial mutation

MOEA/D-DE y = x(i) + F · (x(j) − x(k))
MOEA/D-GA SBX crossover and

polynomial mutationNSGA-II

Table 4.9: A summary of mutation methods in Experiment II

Method Mutation Formula

LEVY y = x(i) + α0 · (x(i) − x(j))⊕Lévy(β)

UNIF y = x(i) + C · (x(j) − x(k))⊕Unif(−1, 1)

NORM y = x(i) + C · (x(j) − x(k))⊕N(0, 1)

CONST y = x(i) + F · (x(j) − x(k))

Table 4.10: Numerical results on Hangseng in Experiment II

Metric LEVY UNIF NORM CONST

GD
Best 4.95E-06 4.57E-06 4.24E-06 3.49E-06

Median 8.10E-06 7.07E-06 7.02E-06 7.98E-06
Std. 1.44E-06 1.62E-06 1.44E-06 1.18E-04

S
Best 1.43E-05 1.43E-05 1.37E-05 8.51E-06

Median 1.98E-05 1.83E-05 1.85E-05 1.80E-05
Std. 4.95E-06 4.66E-06 4.45E-06 6.76E-06

MS
Best 9.02E-03 9.09E-03 9.10E-03 9.00E-03

Median 8.85E-03 8.82E-03 8.86E-03 8.54E-03
Std. 1.39E-04 2.04E-04 1.87E-04 9.93E-04

∆
Best 2.48E-01 2.47E-01 2.47E-01 2.33E-01

Median 2.64E-01 2.63E-01 2.65E-01 2.87E-01
Std. 2.26E-02 1.94E-02 1.60E-02 8.20E-02

IGD
Best 2.97E-05 2.88E-05 2.89E-05 3.15E-05

Median 3.40E-05 3.40E-05 3.27E-05 6.03E-05
Std. 5.92E-06 9.76E-06 8.27E-06 2.44E-04

HV
Best 2.64E-05 2.64E-05 2.64E-05 2.64E-05

Median 2.63E-05 2.64E-05 2.64E-05 2.63E-05
Std. 1.42E-08 1.69E-08 1.43E-08 2.21E-06

34



Table 4.11: Numerical results on DAX 100 in Experiment II

Metric LEVY UNIF NORM CONST

GD
Best 7.23E-06 4.76E-06 4.88E-06 7.32E-06

Median 9.37E-06 7.43E-06 6.85E-06 1.65E-05
Std. 9.63E-07 1.39E-06 1.47E-06 9.27E-05

S
Best 2.58E-05 2.61E-05 2.70E-05 1.64E-05

Median 3.28E-05 3.09E-05 3.19E-05 2.98E-05
Std. 3.96E-06 3.97E-06 5.22E-06 6.61E-06

MS
Best 8.00E-03 8.02E-03 8.13E-03 8.36E-03

Median 7.75E-03 7.76E-03 7.82E-03 7.40E-03
Std. 1.59E-04 1.48E-04 1.36E-04 7.26E-04

∆
Best 3.85E-01 3.94E-01 3.89E-01 3.60E-01

Median 4.12E-01 4.08E-01 4.07E-01 4.36E-01
Std. 2.32E-02 2.47E-02 2.55E-02 7.72E-02

IGD
Best 3.40E-05 3.34E-05 3.20E-05 4.40E-05

Median 4.39E-05 4.07E-05 3.83E-05 9.48E-05
Std. 1.14E-05 7.89E-06 5.77E-06 9.39E-05

HV
Best 1.90E-05 1.91E-05 1.91E-05 1.90E-05

Median 1.90E-05 1.90E-05 1.90E-05 1.89E-05
Std. 1.19E-08 1.28E-08 1.50E-08 1.08E-06

Table 4.12: Numerical results on FTSE 100 in Experiment II

Metric LEVY UNIF NORM CONST

GD
Best 6.56E-06 5.58E-06 4.83E-06 7.01E-06

Median 8.48E-06 8.26E-06 7.26E-06 1.83E-05
Std. 1.12E-06 2.24E-06 5.79E-05 1.55E-04

S
Best 1.73E-05 1.51E-05 1.62E-05 9.87E-06

Median 2.06E-05 1.75E-05 1.87E-05 1.72E-05
Std. 3.94E-06 1.56E-06 3.02E-06 3.34E-06

MS
Best 5.82E-03 5.48E-03 5.69E-03 5.74E-03

Median 5.47E-03 5.19E-03 5.35E-03 5.15E-03
Std. 1.54E-04 1.29E-04 2.07E-04 5.08E-04

∆
Best 4.09E-01 4.19E-01 4.13E-01 4.21E-01

Median 4.35E-01 4.45E-01 4.36E-01 4.51E-01
Std. 2.03E-02 1.13E-02 2.60E-02 6.30E-02

IGD
Best 2.62E-05 3.95E-05 3.02E-05 4.26E-05

Median 4.29E-05 7.26E-05 5.51E-05 9.09E-05
Std. 1.27E-05 1.66E-05 4.61E-05 1.47E-04

HV
Best 1.37E-05 1.37E-05 1.37E-05 1.37E-05

Median 1.37E-05 1.37E-05 1.37E-05 1.36E-05
Std. 8.46E-09 2.48E-08 4.42E-07 1.36E-06
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Table 4.13: Numerical results on S&P 100 in Experiment II

Metric LEVY UNIF NORM CONST

GD
Best 1.09E-05 7.66E-06 7.01E-06 1.27E-05

Median 1.41E-05 1.01E-05 1.04E-05 3.92E-05
Std. 1.83E-06 2.67E-05 2.99E-05 7.64E-05

S
Best 2.20E-05 2.07E-05 2.07E-05 1.72E-05

Median 2.58E-05 2.29E-05 2.42E-05 2.31E-05
Std. 4.15E-06 2.61E-06 4.55E-06 4.78E-06

MS
Best 7.75E-03 7.47E-03 7.64E-03 7.60E-03

Median 7.32E-03 7.20E-03 7.35E-03 7.23E-03
Std. 1.60E-04 1.33E-04 1.65E-04 2.53E-04

Delta
Best 3.28E-01 3.32E-01 3.30E-01 3.29E-01

Median 3.55E-01 3.49E-01 3.49E-01 3.66E-01
Std. 2.04E-02 1.86E-02 3.04E-02 2.41E-02

IGD
Best 3.35E-05 3.62E-05 3.12E-05 3.64E-05

Median 4.72E-05 5.23E-05 4.28E-05 7.12E-05
Std. 1.11E-05 1.42E-05 1.31E-05 4.16E-05

HV
Best 1.87E-05 1.87E-05 1.88E-05 1.87E-05

Median 1.87E-05 1.87E-05 1.87E-05 1.85E-05
Std. 1.73E-08 1.65E-07 1.78E-07 4.79E-07

Table 4.14: Numerical results on Nikkei in Experiment II

Metric LEVY UNIF NORM CONST

GD
Best 5.92E-06 5.45E-06 5.38E-06 5.93E-05

Median 7.71E-06 4.25E-05 4.10E-05 1.45E-04
Std. 1.42E-06 1.93E-04 2.65E-05 7.09E-05

S
Best 9.54E-06 1.24E-05 8.75E-06 5.99E-06

Median 1.66E-05 1.54E-05 1.50E-05 1.15E-05
Std. 5.35E-06 2.62E-06 3.05E-06 4.53E-06

MS
Best 4.14E-03 4.08E-03 4.07E-03 4.29E-03

Median 3.90E-03 3.68E-03 3.70E-03 2.96E-03
Std. 1.57E-04 5.59E-04 3.12E-04 5.48E-04

∆
Best 3.89E-01 3.84E-01 3.76E-01 3.17E-01

Median 4.33E-01 4.44E-01 4.55E-01 5.58E-01
Std. 5.61E-02 9.82E-02 6.73E-02 1.00E-01

IGD
Best 1.84E-05 1.83E-05 1.95E-05 7.90E-05

Median 2.72E-05 4.16E-05 4.85E-05 2.23E-04
Std. 1.68E-05 4.51E-04 2.98E-05 6.95E-05

HV
Best 8.31E-06 8.29E-06 8.28E-06 7.96E-06

Median 8.29E-06 8.11E-06 8.10E-06 7.23E-06
Std. 2.80E-08 9.83E-07 1.34E-07 3.43E-07
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Fig. 4.5: Final population on five datasets in objective space (Experiment II)
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4.3.3 Discussion

The numerical results show a good performance of the proposed MOEA/D-Lévy and LEVY.
It is easy to realize that those long trajectories caused by LF can enhance the global search
capability of algorithms by comparing the results of LEVY and NORM in Experiment II, as
the main difference between a heavy-tailed distribution and standard normal distribution
is the occasional generation of large numbers. In this discussion, I show further insights on
how long trajectories contribute to this observed improvement.

To record long trajectories, I compute the Euclidean distance between a repaired off-
spring y and its parent xi in the mutation methods based on LEVY, UNIF, NORM and
CONST, using Nikkei dataset. This distance is the length of the trial vector. In addition,
I record the frequency that this offspring is successfully updated. Based on the parameter
settings in Section 4.1.3, the possible frequency for one offspring is 0, 1 or 2. Fig. 4.7a,
4.8a and 4.9a show the frequency of trajectories in different length, at 1st, 3rd and 10th
generation in one certain run, respectively. Fig. 4.7b, 4.8b and 4.9b illustrate the corre-
sponding populations at each generation. Fig. 1.1 shows a population on objective space
at 10th generation in Experiment I. Fig. 4.6 shows the frequency of successfully updated
long trajectories (i.e., length is larger than 0.2) by generations in MOEA/D-Lévy in the
same run.

It is interesting to notice that there are some long trial vectors successfully updated
in the beginning phase of LEVY, while the same observation does not occur in UNIF,
NORM, and CONST. The long trajectory usually represents a global search. As a result,
LEVY achieves early in the optimization a solution set that is widely spread across the
objective space (i.e., show in Fig. 4.7b and 4.8b). In Fig. 1.1 and 4.9b, methods based on
LF form a relatively better front than other methods. Fig. 4.10a to 4.10f illustrates the
population of five algorithms in Experiment I at different generations in a certain run. In
the beginning phase of the optimization, MOEA/D-Lévy forms multiple “sub-sets” while
the other methods hold only one front. This may indicate that methods based on LF can
search multiple areas at the same time, while other mutations can only deal with one.
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Fig. 4.6: Successfully updated long trials by generations
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Fig. 4.7: Experiment II, Nikkei Dataset (1st generation). Upper: Frequency of “Succesful
trials” (when the mutation operator generates an offspring that is better than its parent)
against the length of the mutation step. Lower: population in the objective space.
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Fig. 4.8: Experiment II, Nikkei Dataset (3rd generation). Upper: Frequency of “Succesful
trials” (when the mutation operator generates an offspring that is better than its parent)
against the length of the mutation step. Lower: population in the objective space.
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Fig. 4.9: Experiment II, Nikkei Dataset (10th generation). Upper: Frequency of “Succesful
trials” (when the mutation operator generates an offspring that is better than its parent)
against the length of the mutation step. Lower: population in the objective space.
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Fig. 4.10: Experiment I: Populations of different algorithms over generations in the Nikkei
dataset. MOEA/D-Lévy covers a wider area early in the optimization, which leads to a
better distribution over the Pareto Front around the 100th generation.
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4.3.4 An Explanation of Long Trajectories Considering the Case of Port-
folio Optimization

To explain this behavior, consider that, in PO, trial vectors or trajectories represent the
re-allocation of capital. The heavy-tailed distribution holds a large probability to generate
small values, and a small probability to generate large values. Fig. 4.11 presents an example
of this procedure. The variable (asset) that receives a large number during mutation will
get more capital allocation. What is more, to satisfy the constraint that the summation
of variables equals to 1 in (2.6), the repair steps will implement a proper scaling, and thus
the other variables (assets) will be reduced. Therefore, the re-allocation of capital will be
centralized on some assets rather than equally distributed across all assets. If these assets
hold relatively high returns, the algorithm can find portfolio candidates with high returns
early in the optimization. As the initial population is centralized at the low-risk area in
objective space because of the uniform initialization, this mutated candidate has a large
probability to be successfully updated. Following this procedure, the solution set will be
distributed in multiple areas on the search space. Then, the algorithm will mainly update
solutions by local search but in multiple search areas, as the accepted long trials decrease by
generation in Fig. 4.6. Such different search patterns may lead to the observed improvement
compared with other methods.
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Fig. 4.11: How LF mutation helps exploration in PO. An interaction between long trajec-
tories and unit constraint leads to candidates with high allocation in only some assets.
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4.4 Experiment III: Comparison on Lévy Flight Mutation
with Different Truncation

4.4.1 Parameter Settings

Another way to show the effectiveness of long trajectories is to implement a truncation
directly on LEVY so that it will not generate large steps. Mathematically, this process can
be expressed as follows, where ϵ > 0.

Lévyϵ(β) = max{−ϵ,min{ϵ, Lévy(β)}} (4.7)

As long trajectories are accepted mainly in the beginning phase of optimization, this
section discusses based on the results at 100th generation for LF with truncation with
different ϵ settings, using the Nikkei dataset. To simplify the discussion, only one of the
overall metrics, IGD, is used in the evaluation. In this 51-repeat experiments, parameter ϵ
are set to {infinity, 1e+07, 1e+06, 1e+05, 1e+04}. Other parameters such as α0 and β are
the same as LEVY in Section 4.3.1. When ϵ is set to infinity, it implements exactly the
same as LEVY.

4.4.2 Experimental Results and Discussion

Table 4.15 shows the IGD results of LEVY with different truncation. Fig. 4.12 illustrates
IGD by generations for the best runs. When ϵ is set to 1e+07, it holds the best median
(1.46e-04) and best values in terms of IGD. However, when ϵ is set to infinity and 1e+06,
the algorithm still performs good results (i.e., around 2e-04). When ϵ is set to 1e+05 and
1e+04, the performance of the algorithm becomes worse (i.e., around 3e-03). In addition,
the evolutionary process shows that for the first ϵ settings, IGD decreases rapidly in the
first 20th generations. However, the same observation cannot be found when a smaller ϵ is
applied.

The results indicate that when applying a truncation, IGD becomes worse, especially
when ϵ is set to some relatively small values (i.e., 1e+05 and 1e+04). In addition, the
evolutionary process shows that when ϵ is set to the small values, the algorithm cannot
explore a wide area, for the IGD does not show a rapid decrease. As a small truncation
can limit the length of trajectories into a small interval, these results may provide another
evidence for the effectiveness of long trajectories in LF.

Table 4.15: IGD of LEVY with different ϵ at 100th generation on Nikkei

ϵ infinity 1e+07 1e+06 1e+05 1e+04
Best 8.08E-05 5.92E-05 9.48E-05 1.51E-03 3.18E-03

Median 1.91E-04 1.46E-04 2.00E-04 3.00E-03 3.34E-03
Std. 9.71E-05 8.31E-05 8.13E-05 4.02E-04 1.20E-04
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4.5 Experiment IV: Comparison on Mutation based on Nor-
mal Distributions with Different Variance

4.5.1 Parameter Settings

In Section 4.3.3, the effectiveness of long trajectories in the beginning phase has been shown
by tracking the Euclidean distance between parent and offspring. Also, in Section 4.4.2,
this effectiveness has been proved by comparison with truncated LF. However, these long
trajectories can also be found when applying normal distribution with a large variance. In
this section, NORM (i.e., a comparison method in Experiment II) with different parameter
settings is compared. The formulation of this method is recalled in (4.8).

y = x(i) + C · (x(j) − x(k))⊕N(0, 1) (4.8)

The parameter C is set to {0.5, 1, 5, 10, 50, 100}. Other parameter settings are the
same as Section 4.3.1. When C is set to 0.5, it performs exactly the same as NORM in
Experiment II.

4.5.2 Experimental Results and Discussion

Table 4.16 presents the distribution of IGD of different parameter C in the final generation
for 51 runs on the Nikkei dataset. The parameter C controls the variance of the normal
distribution, and a larger C shows a larger variance. Fig. 4.13 illustrates how IGD changes
by generations in the best run of each parameter setting.
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Table 4.16: IGD of NORM with different C on Nikkei

C 0.5 1 5 10 50 100
Best 1.95E-05 2.27E-05 4.31E-05 5.43E-05 7.85E-05 7.09E-05

Median 2.27E-05 5.14E-05 1.31E-04 1.35E-04 1.85E-04 2.19E-04
Std. 4.31E-05 3.35E-05 9.47E-05 9.44E-05 1.00E-04 1.17E-04

As a result, the best median of IGD holds when C is set to 0.5, and a larger variance
leads to a worse performance in terms of IGD. In addition, one may notice that, for normal
distribution with large variance (e.g. C = 100), IGD decreases rapidly at the beginning, but
also converges quickly. This may indicate that, by applying a large variance to the normal
distribution, the algorithm does find a promising area by long trajectories. However, it
cannot implement an efficient exploitation in the later steps, for the proportion of short
motion becomes less when applying a larger variance. Therefore, the performance of LF
mutation is not only derived from its global search capability but a balance between global
search and local search.
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Chapter 5

Conclusions

5.1 Summary of the Research

In this thesis, a novel method has been proposed to solve the MOOP formulation of PO by
injecting LF into MOEA/D as a mutation method. The main reason for this modification is
derived from the efficient global search capability of LF and the high-dimensional difficulty
of the problem. One of the main contributions of this work is to analyze and explain how
LF improves the results.

In the experiments, the proposed method was first compared with several literature
methods, namely MOEA/D-DEM, MOEA/D-DE, MOEA/D-GA, and NSGA-II. This com-
prehensive assessment was implemented on five frequently used PO benchmark with unit
constraint. The results on six evaluation metrics have shown the superiority of the proposed
method (e.g. MOEA/D-Lévy holds the best IGD and HV on the largest problem Nikkei).

The main focus of the thesis is on analyzing the reason that LF improves the perfor-
mance. Thus, LF mutation (LEVY) has been compared with three other distribution-based
mutation methods (UNIF, NORM, and CONST). Except for the good performance of LEVY
(e.g. it performs best in terms of IGD and HV on Nikkei), the experimental results have
shown that methods using LF mutation can retrieve a relatively better solution set at the
beginning of the optimization. By tracking the distance between parents and offspring dur-
ing the evolutionary process, I have found that LF mutation promotes global search at the
beginning and search multiple areas of the objective space at the same time. To explain this
behavior, I have provided an interpretation considering the property of the PO. That is, the
re-allocation of capital becomes centralized on several assets when applying LF mutation,
and thus, the algorithm can search the area with high return and high risk efficiently even
in the beginning phase.

Additionally, two extra experiments have shown further evidence of the efficiency of LF
mutation. By comparing LF mutation with different truncation, the effectiveness of long
trajectories has been again confirmed. In the comparison on mutation methods based on
normal distributions with different variance, the results have indicated that the performance
of the proposed method is not only derived from its strong global search capability but the
good balance between global search and local search.
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From an experimental point of view, this thesis has shown that the proposed method, or
more specifically LF mutation, holds a good control on the balance between global search
and local search, and utilization on the structural information of the problem when solving
PO.

5.2 Limitations and Future Work

This thesis discusses based on a simple PO model and benchmark data for convenience.
However, several limitations on the problem model may remain a further investigation.

• The experiments and discussion of this thesis are based on PO benchmarks with a
simple unit constraint. Also, the financial data in these benchmarks are out-of-date
(from 1992 to 1997). Thus, one cannot exactly estimate the performance of the
proposed algorithm in a realistic PO based on this study.

• The Markowitz Mean-Variance model assumes that the return of an asset follows a
normal distribution. However, some asset return follows an asymmetrical distribu-
tion, and thus variance may not be a good assessment for risk. To fix this problem,
Markowitz has suggested to use a semi-variance as a risk assessment. Another solution
is to introduce a skewness parameter into the model.

Despite the limitations, other future work concerns further discussion on the effectiveness
of LF, new proposals to improve the performance, adaption to a practical system and
possibility to extend the method on other problems. The following ideas may be good for
a trial.

• The long trajectories or global search help in the beginning phase in this simple
problem. However, one may get different observations when LF interacts with difficult
constraints.

• In Fig. 4.6, few long trajectories get successfully updated with the generation in-
creased. Thus, one may design an adaptive strategy to reduce global search but
enhance local search in the middle and ending period of optimization.

• The risk assessment in the PO is computed using co-variance between asset returns,
and thus turns the problem difficult. However, a better performance may be achieved
by designing a non-separable search strategy or specifically designed data structure.

• In Section 4.3, the results have shown that the proposed method can achieve a
relatively good solution set even at the beginning phase. Therefore, one may design
a hybrid strategy and utilize this property to speed up the computation, which is an
important concern in the practical application.
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5.3 Publications

Several publications in the following list are derived from this thesis.

• Yifan He, Claus Aranha and Hitoshi Kanoh. Solving Portfolio Optimization Prob-
lems based on MOEA/D and Lévy Flight. In Symposium of the Japanese Society of
Evolutionary Computation 2019, pages 75-82. JSEC, Miyagi, sep 2019.

• Yifan He, Claus Aranha. Solving Portfolio Optimization Problems Using MOEA/D
and Lévy Flight. Swarm and Evolutionary Computation, under review.
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on Nature & Biologically Inspired Computing (NaBIC), pages 210–214. IEEE, 2009.

56



[47] Wei Ma, Zhengxing Sun, Junlou Li, Mofei Song, Xufeng Lang, and Cheng Le. An Ar-
tificial Bee Colony Algorithm Guided by Lévy Flights Disturbance Strategy for Global
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Appendix A

Pre-experiments

This appendix presents the results of pre-experiments, implementing the parameter tuning
steps for all methods used in the experiments in Chapter 4. I select the parameters based
on the average IGD performance at 300th generation when optimizing the Nikkei dataset
with 30 repeats. Several paremeters are directly set to the values used in prior studies. For
MOEA/D-based algorithms, T is set to 20, σ is set to 0.9, and nr is set to 2. For NSGA-II,
binary tournament is used (i.e., tournament size is 2). For GA-based algorithms, the index
parameters ηc and ηm for SBX crossover and polynomial mutation are set to 20. For all
algorithms, the population size is set to 100.

A.1 Parameter Tuning for MOEA/D-Lévy

The tuned parameters for MOEA/D-Lévy is summarized in the following table.

• The scaling parameter α0 is tuned among {1e-06, 1e-05, 1e-04, 1e-03, 1e-02, 1e-01},
when β = 0.4 and pm = 0. Based on the results in Fig. A.1 and Table A.2, this α0

is set to 1e-05 in the later experiments.

• The index parameter β for the stable distribution is then tuned among {0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1.0}, when α = 1e-05 and pm = 0. The results in Fig. A.2 and
Table A.3 show that when β = 0.3, the best IGD is achieved.

• The mutation rate pm for the polynomial mutation is tuned among {0.001, 1/n=0.004,
0.010, 0.050, 0.100} (n = 225 is the dimension of the problem), when α0 = 1e-05 and
β = 0.3. Fig. A.3 and Table A.4 show that the best IGD is achieved when pm is set
to 1/n.

Table A.1: A summary of paremeters used in MOEA/D-Lévy

α0 1e-05
β 0.3
pm 1/n
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Table A.2: Results of parameter tuning on α0 in MOEA/D-Lévy

α0 Mean Std.

1e-06 9.22E-05 4.35E-05
1e-05 6.18E-05 3.57E-05
1e-04 6.61E-05 2.85E-05
1e-03 7.90E-05 3.03E-05
1e-02 1.34E-04 4.95E-05
1e-01 1.77E-04 7.49E-05

1e-06 1e-05 1e-04 1e-03 1e-02 1e-01
alpha
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Fig. A.1: IGD by α0 in MOEA/D-Lévy at 300th generation on Nikkei
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Table A.3: Results of parameter tuning on β in MOEA/D-Lévy

β Mean Std.

0.3 6.32E-05 5.60E-05
0.4 1.28E-04 5.50E-05
0.5 3.96E-04 1.88E-04
0.6 2.39E-03 9.36E-04
0.7 3.04E-03 4.67E-04
0.8 3.42E-03 9.10E-05
0.9 3.40E-03 7.50E-05
1.0 3.42E-03 1.08E-04

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
beta
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Fig. A.2: IGD by β in MOEA/D-Lévy at 300th generation on Nikkei
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Table A.4: Results of parameter tuning on pm in MOEA/D-Lévy

pm Mean Std.

0.001 5.90E-05 3.68E-05
1/n = 0.004 5.00E-05 1.75E-05

0.010 7.20E-05 2.81E-05
0.050 2.05E-04 5.79E-05
0.100 3.30E-04 5.30E-05

0.001 1/n=0.004 0.010 0.050 0.100
pm
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Fig. A.3: IGD by pm in MOEA/D-Lévy at 300th generation on Nikkei
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A.2 Parameter Tuning for MOEA/D-DEM

The tuned parameter for MOEA/D-DEM is present in Table A.5.

• The scaling parameter F for the DE mutation is tuned among {0.1, 0.5, 0.9, 1.3, 1.7,
2.0}, when pm is set to 0. Fig. A.4 and Table A.6 shows the tuning results. Based
on the average IGD in the table, I select F as 1.3.

• The mutation rate pm is then tuned among {0.001, 1/n=0.004, 0.010, 0.050, 0.100}
(n = 225 is the dimension of the problem), when F is set to 1.3. Fig. A.5 and Table
A.7 present the tuning result for this parameter. This mutation rate is set to 1/n in
the later steps.

A.3 Parameter Tuning for MOEA/D-DE

The parameters used in MOEA/D-DE is based on the tuning results of MOEA/D-DEM,
i.e. F = 1.3.

Table A.5: A summary of paremeters used in MOEA/D-DEM

F 1.3
pm 1/n

Table A.6: Results of parameter tuning on F in MOEA/D-DEM

F Mean Std.

0.1 3.34E-04 6.30E-05
0.5 9.09E-04 4.34E-04
0.9 2.70E-04 8.60E-05
1.3 2.54E-04 1.12E-04
1.7 2.71E-04 1.10E-04
2.0 2.96E-04 1.20E-04

Table A.7: Results of parameter tuning on pm in MOEA/D-DEM

pm Mean Std.

0.001 5.00E-05 4.00E-05
1/n = 0.004 3.00E-05 1.80E-05

0.010 5.00E-05 5.60E-05
0.050 6.90E-04 5.40E-05
0.100 1.32E-03 5.35E-04
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Fig. A.4: IGD by F in MOEA/D-DEM at 300th generation on Nikkei
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Fig. A.5: IGD by pm in MOEA/D-DEM at 300th generation on Nikkei
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A.4 Parameter Tuning for MOEA/D-GA

A summary of the tuned parameter for MOEA/D-GA is present in Table A.8.

• The crossover rate pc is first tuned among {0.6, 0.7, 0.8, 0.9, 1.0}, when the mutation
rate pm is set to 0.05. Based on the results in Fig. A.6 and Table A.10, this rate is
set to 0.7.

• The mutation rate pm is then tunes among {0.001, 1/n=0.004, 0.010, 0.050, 0.100},
when pc is set to 0.7. The results is present in Fig. A.7 and Table A.11. In terms
of mean, one may find pm = 0.05 is a better choice. Another possible choice is pm
= 0.01, for it holds the best median. However, it is easy to notice that there are
many outliers with this parameter setting, which is not desirable in the optimization.
Therefore, I select 0.05 as the mutation rate.

A.5 Parameter Tuning for NSGA-II

The tuned parameter for NSGA-II is present in Table A.9.

• The crossover rate pc is first tuned among {0.6, 0.7, 0.8, 0.9, 1.0}, when the mutation
rate pm is set to 0.05. Based on the results in Fig. A.8 and Table A.12, this rate is
set to 0.7.

• The mutation rate pm is then tunes among {0.001, 1/n=0.004, 0.010, 0.050, 0.100},
when pc is set to 0.7. The results is present in Fig. A.9 and Table A.13. Based on
the results, the mutation rate is set to 0.01.

Table A.8: A summary of paremeters used in MOEA/D-GA

pc 0.70
pm 0.05

Table A.9: A summary of paremeters used in NSGA-II

pc 0.70
pm 0.01

64



Table A.10: Results of parameter tuning on pc in MOEA/D-GA

pc Mean Std.

0.6 3.71E-04 5.82E-04
0.7 2.60E-04 7.30E-04
0.8 6.16E-04 8.90E-04
0.9 4.16E-04 6.07E-04
1.0 4.57E-04 7.09E-04
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pc
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Fig. A.6: IGD by pc in MOEA/D-GA at 300th generation on Nikkei
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Table A.11: Results of parameter tuning on pm in MOEA/D-GA

pm Mean Std.

0.001 5.77E-04 1.34E-04
1/n = 0.004 6.19E-04 9.46E-04

0.010 4.93E-04 8.71E-04
0.050 3.71E-04 4.27E-04
0.100 7.41E-04 8.74E-04

0.001 1/n=0.004 0.010 0.050 0.100
pm
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Fig. A.7: IGD by pm in MOEA/D-GA at 300th generation on Nikkei
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Table A.12: Results of parameter tuning on pc in NSGA-II

pc Mean Std.

0.6 1.74E-04 4.26E-05
0.7 1.70E-04 3.09E-05
0.8 1.99E-04 4.30E-04
0.9 2.13E-04 4.75E-05
1.0 2.53E-04 4.22E-05

0.6 0.7 0.8 0.9 1.0
pc

1.0
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2.0

2.5

3.0

3.5

IG
D

×10−4

Fig. A.8: IGD by pc in NSGA-II at 300th generation on Nikkei
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Table A.13: Results of parameter tuning on pm in NSGA-II

pm Mean Std.

0.001 3.23E-04 6.66E-05
1/n = 0.004 1.91E-04 3.76E-05

0.010 1.63E-04 3.84E-05
0.050 2.13E-04 4.82E-05
0.100 3.32E-02 7.35E-05

0.001 1/n=0.004 0.010 0.050 0.100
pm
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2
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Fig. A.9: IGD by pm in NSGA-II at 300th generation on Nikkei
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A.6 Parameter Tuning for LEVY

The parameter setting of LEVY can be referred to that of MOEA/D-Lévy, i.e. α0 is set to
1e-05 and β is set to 0.3 (Section A.1).

A.7 Parameter Tuning for UNIF

In UNIF, only one parameter, the scaling parameter C need to be tuned. Values among
{0.05, 0.1, 0.5, 1, 5, 10, 50, 100} are tried. Based on the results in Fig. A.10 and Table
A.14, the best setting of this scaling parameter is 1.

A.8 Parameter Tuning for NORM

The parameter tuning of NORM is similar as that of UNIF. As shown in Fig. A.11 and
Table A.15, the best average IGD is achieved when C is set to 0.5, among the candidate
settings {0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.

One may notice in the table, when C is set to 5 and 10, they hold the same mean and
standard deviation. This is caused by the rounding process in the statistical steps. In fact,
they performs different but close values (i.e., avg. = 1.703E-04 for C at 5, and avg. =
1.674E-04 for C at 10).

A.9 Parameter Tuning for CONST

As CONST is exactly the same as MOEA/D-DE, its parameter setting can be referred to
that of MOEA/D-DEM in Section A.2.

69



Table A.14: Results of parameter tuning on C in UNIF

C Mean Std.

0.05 3.33E-03 1.27E-04
0.1 3.32E-03 1.49E-04
0.5 1.41E-04 5.50E-05
1 7.10E-05 7.40E-05
5 1.01E-04 3.80E-05
10 1.25E-04 8.20E-05
50 1.71E-04 7.90E-05
100 2.31E-04 1.29E-04
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C
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Fig. A.10: IGD by C in UNIF at 300th generation on Nikkei
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Table A.15: Results of parameter tuning on C in NORM

C Mean Std.

0.05 3.34E-03 1.08E-04
0.1 3.19E-03 1.53E-04
0.5 6.00E-05 3.10E-04
1 8.00E-05 3.00E-05
5 1.70E-04 7.40E-05
10 1.70E-04 7.40E-05
50 2.00E-04 1.07E-04
100 1.90E-04 8.50E-05
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Fig. A.11: IGD by C in NORM at 300th generation on Nikkei
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