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Genetic Knowledge Transfer (GKT)
The process where one Evolutionary Algorithm (EA) is affected by
the dynamics of another EA

Adaptive Transfer of Genetic Knowledge
Effective GKT among a sequence of many different tasks based on
fitness reward and self-adaptation
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Part I: Genetic Knowledge Transfer



Evolutionary Algorithm (EA)

Search algorithms based on the idea of natural evolution
Solve difficult Optimization Problems (OPs)
Applications other than OPs: composing music, generating
programs, . . .

Solving Many Distinct Tasks in A Sequence
Humans solve many distinct tasks and learn to improve themselves

Learn knowledge from the past tasks
Use the obtained knowledge to solve future tasks

The performance of an conventional EA is NOT influenced by the
past tasks it has solved

Can EA learn and improve itself when solving a sequence of many
distinct tasks like a human?
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Evolutionary Algorithms with Multiple Tasks

Multi-Objective Optimization
Optimize more than one conflicting objectives in one run

Maximize return and minimize risk in financial investment

Multi-Task Optimization
Optimize more than one related/similar tasks in one run

Genetic Programming with Multiple Tasks
Search computer programs to solve more than one tasks

Several tasks in one run
Several tasks in sequence
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Multi-Task Optimization (MTO)
Optimize more than one related/similar tasks in one run by
exploiting the common knowledge

Task 1: optimize the structural design of a sedan car
Task 2: optimize the structural design of a SUV

Multi-population Multi-Task Evolutionary Framework[1]

Every task is solved by a sub-population
Solutions to the different tasks go to a crossover step (with a
probability)

x1

x2

Task 1

Task 2

crossover y

Knowledge of Task 2
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Genetic Programming (GP) with Multiple Tasks
GP: EA that searches a population of trees

Using the subtrees from the solutions to one task to help the
search of another task

Reusing Extracted Knowledge in Genetic Programming[2]

1 Solve Task 1 and extract subtrees from good solutions
2 Randomly select a subtree and mutate the individual of Task 2

Task 1 Task 2
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Definition of Genetic Knowledge Transfer (GKT)

The process where an EA is affected by the dynamics of another
EA

Genetic knowledge = the dynamics of an EA (all individuals,
parameters, . . . , during evolution)
Transfer = the process to affect an EA

The entire dynamics of an EA is too much to use
Representative: best individual, final solution/population
Building blocks: sub-solutions of final solution, common
sub-solutions
High-level statistics: distribution of good variables
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Naive Genetic Knowledge Transfer (NGKT)
Select individuals from the offspring of source EA (affecting EA)
and use as parents in the target EA (affected EA)

Offspring

Parents

Parents

Offspring

Source EA Target EA

GKT: selected individuals

NGKT is the common component of many literature methods
NGKT in MTO
NGKT+building block extraction in GP
NGKT+statistics
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Case Study I: Multi-Criteria Seismic History
Matching



Overview of Case Study I

Research Question
How to aggregate different objective functions in Seismic History
Matching 1)without assigning weights and 2)getting solutions
good on all objectives?

Methodology
We apply the idea of Genetic Knowledge Transfer

1 We explain that Lexicase Selection is a variant of NGKT
2 We propose a novel method based on Lexicase Selection and

Differential Evolution
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Seismic History Matching (SHM)

Search a model x of subsurface by matching simulation results
with historical observation regarding M metrics

minimize ||simk(x)− obsk ||Mk=1
s.t. x ∈ Rn

Example of SHM with two metrics
Seismic data: a scan of the field using wave
Well log data: a record of metric value in different time

Aggregation of multiple metrics
Different types: matrix (seismic) and time series (well log)
Different scales
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Seismic History Matching by Evolutionary Algorithms
Weighted sum aggregation

Hard to decide weight

Multi-Objective Optimization
Optimize conflicting objectives simultaneously
Applications in SHM: NSGA-II[3], RVEA[4]

err1

err2
Pareto Front: best set
of trade-off solutions◦

◦
◦
◦
◦
◦

◦ ◦ ◦

Large error on err2;
likely unphysical

Large error on err1;
likely unphysical

Small error on both err1 and err2;
promising models
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Research Objective of Case Study I

How to aggregate the objective functions in the SHM problems?
1 No weight assignment is needed
2 Solutions perform well on all objectives

For a SHM problem, there is only one true model in the real world
All objective functions should share same optimal solution
Our idea of GKT should apply to this problem
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Lexicase Selection[5]

Filter the population based on shuffled list of objective functions

x1 x2 x3 x4 x5 x6

5 10 5 5 6 9f3

x1 x3 x4

6 10 6f1

x1 x4

3 4f5

x1 selected individual
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Genetic Knowledge Transfer in Lexicase Selection
Consider Lexicase Selection with 2-objective case

1 [f1, f2] → select individuals with best fitness on f1
2 [f2, f1] → select individuals with best fitness on f2

Offspring

Best individuals
on f1

Best individuals
on f2

Parents
reproduce

EA solves f1

Genetic knowledge from
EA that solves f2

EA solves f2

Genetic knowledge from
EA that solves f1

GKT within a single
population
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Proposed Differential Evolution with Lexicase Selection

Differential mutation

y = xlex + F · (xr1 − xr2)

xlex : selected by Lexicase Selection
xr1 , xr2 : selected by random selection
F : scaling factor

Other modifications
Omit the survival selection
Introduce polynomial mutation after differential mutation

We call this method Lex-DE
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Experimental Methods
Test problem: Volve dataset[6]

Two seismic objectives: Seis-mean, Seis-spa
Three well log objectives: P-F-12, P-F-14, P-F-15C

Methods to compare
Lex-DE (proposed method)
NSGA-II[3]: most common Multi-Objective method on SHM
RVEA[4]: Multi-Objective method using decomposition

Parameters
population size = 20, max generation = 100

SHM is heavya, small number of evaluation is common
E.g., SHM by RVEA[4]: pop. size = 20, max gen. = 75

Five repetition
aIt cost us about one week to run five repetitions of one method

18



Non-dominated Solutions of Best Runs in Objective Space
The objective values are scaled into [0,1] based on non-dominated
solutions in all runs
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1

Every subplot is a 2D shot
of the 5D objective space

Areas in the boxes hold
smaller error on all metrics;
more promising

Solutions of Lex-DE (green)
concentrated in these area
→ what we want in SHM
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Summary of Case Study I

Objective aggregation for SHM problems
1 Applied the idea of Naive Genetic Knowledge Transfer

(NGKT)
2 Lexicase Selection

A variant of NGKT between multiple tasks with only one
population

3 Proposed Differential Evolution based on Lexicase Selection
Better performance than NSGA-II and RVEA
More concentrated solution set and closer to ground truth
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Part II: Adaptive Transfer of Genetic Knowledge



Genetic Knowledge Transfer in Sequential Problem-solving
GKT between EA that solved past tasks and EA that is going to
solve future tasks
NGKT among Many Distinct Tasks: An Example

Task 1 . . . Task t

x1 . . . xt

Task t + 1

Parents Offspring?

Solved t (a large number) tasks that are not necessarily similar
Final solution as genetic knowledge
Not all genetic knowledge from the t tasks are helpful

How can an EA automatically discover helpful genetic knowledge
when it has solved too many distinct tasks?

There are both helpful and unhelpful genetic knowledge
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Self-adaptive Evolutionary Algorithms[7]

Self-adaptive EAs automatically find the best parameter
E.g., best mutation rate of Genetic Algorithm from [0,1]

x1

x2

x3

x4

x5
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0.3

0.4

0.5

0.3

0.2

z1

z2

z3

z4

z5

0.2

0.3

0.3

0.2

0.3

r ∼ [0,1]

Assume y1, y2, y5 are
better than parents

µr = 0.33 0.33+ eµr = 0.27 0.27+ e
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Automatic Discovery of Helpful Genetic Knowledge

Find helpful genetic knowledge for Task t+1 from previous t tasks
Assume that we use final solutions as genetic knowledge
→ Find helpful solutions among t solutions

Discovering Helpful Genetic Knowledge by Self-adaptation
1 Select a solution s by probability
2 Crossover an individual in EA (that solves Task t + 1) with

the selected solution
3 If the child is better, increase the probability to select s

We call this idea the adaptive transfer of genetic knowledge
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Adaptive Transfer of Genetic Knowledge

Task 1 . . . Task t

x1 . . . xt

Selector

prob = (p1, . . . ,pt)

xk

Parents

Offspring Task t + 1

GKT

update pk
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Case Study II: Knowledge-Driven Program
Synthesis



Overview of Case Study II

Research Question
How can a Genetic Programming algorithm improve itself when
solving a sequence of many distinct program synthesis problems?

Methodology
We apply the idea of adaptive transfer of genetic knowledge

1 We use subprograms as genetic knowledge
2 We propose a system that solves tasks, extracts subprograms,

and reuses subprograms by adaptive transfer
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Program Synthesis

Find a sequence of instructions x from the available set I that
satisfies a set of I/O examples {ink ,outk}Mk=1

minimize ΣM
k=1||x(ink)− outk ||

s.t. x = (x1, . . . ,xn)

xi ∈ I

Example of Program Synthesis Problem
Instruction set: { x, y, add, sub, mult, div, 1, 0 }
I/O examples

in=(1, 1), out=0
in=(2, 4), out=4

Program: mult(sub(x,y),sub(y,x))
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Genetic Programming (GP)
EAs that solve program synthesis problems

Good Programs

New Programs

selectionmutation

initialization

Applications of GP
Neural Architecture Search
Image Classification and Processing
Feature Selection, Extraction, and Construction
Trading Rule Extraction
Evolvable Hardware (e.g., robotics, circuit)
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Research Objective of Case Study II

Humans reuse the code fragments (subprograms) that they wrote
in the past

E.g., using libraries (import numpy as np)
Allow humans to create more complex programs

Can GP do similar thing?
Humans solve a lot of tasks
Humans solve distinct tasks

How can a GP algorithm improve itself when solving a sequence of
many distinct tasks through subprogram reuse?
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Subprogram Reuse in Genetic Programming

Reuse in one task
Automatically Defined Functions[8]

Reuse across multiple similar tasks
Instruction set on several similar problems[9]

Random subtrees from previous image classification task[2, 10]

Common subtrees in two tasks[11]

Final population of the last task[12]

Reuse across many distinct tasks
Our method!
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Proposed Knowledge-Driven Program Synthesis System

GP

Program Synthesis Task

ProgramSubprogram

SubprogramsArchive

extractselect

utilize

update
selection prob.

Main focus
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Components: Subprogram Extraction and Utilization
PushGP[13]

A program is encoded as a list
Invalid instructions in the program are ignored

Proposed Extraction Method: Even Partitioning (EP)
Given a program, how to get subprograms?

Divide a program (list) into subprograms with equal length

Proposed Utilization Method: Replacement Mutation (RM)
Given a subprogram, how to use it with PushGP?

Replace a random part of the parent with the subprogram
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Components: Subprogram Selection
Given an archive of subprograms, how to select helpful ones?

We use the idea of adaptive transfer of genetic knowledge

Archive

Selector

prob = (p1, . . . ,pt)

sk

Parents

Offspring
RM

update pk
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Components: Update Strategy of Selection Probability

p(s) =
¨

q(s)/Σsi q(si) rand()< ε

1/|S| otherwise

prob. to select s success count of s

total success countarchive size

user param.

Success count q(s): if the child generated by RM with s satisfies
more I/O examples than its parents, q(s)← q(s)+ 1

Intuition
1 Exploit subprograms with high success count by probability ε
2 Explore all subprograms by probability 1− ε
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Demonstration of Subprogram Selection Strategy
Small or Large: given an integer n, print “small” if n < 1000 and
“large” if n ≥ 2000

I/O examples: {[in=500, out=“small”], [in=3000,
out=“large”], . . . }
Correct program: input_0 2000 int_gte exec_if (“large”

print_str) (input_0 1000 int_lt exec_if (“small” print_str))

Table: Subprogram archive (1–5 from solution; 6–10 randomly generated)

No. Subprogram (helpful) No. Subprogram (unhelpful)

1 exec_if 6 print_int
2 input_0 1000 int_lt 7 bool_is_empty exec_while

str_remove_all_str
3 input_0 2000 int_gte 8 str_remove_first_str print_bool

str_replace_first_str
4 “small” print_str 9 exec_shove exec_eq
5 “large” print_str 10 str_but_last bool_stack_depth
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Demonstration of Subprogram Selection Strategy
input_0 “large” input_0 1000 int_lt 1000 input_0 2000 int_gte int_lte
exec_when (exec_do_while () “small”) exec_if (print_str) ()

0 20 40 60 80
Generation

0.0

0.1

0.2

0.3

0.4

0.5

Se
lec

tio
n

Pr
ob

ab
ilit

y

Subprogram
1
2
3
4
5
6
7
8
9
10

1

“small” print_str

“large” print_str
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Pilot Experiments on Subprogram Selection Strategy

Verify the effectiveness of self-adaptive strategy

Select four simple problems from a benchmark[14]

Median (MD), Compare String Lengths (CSL), Small or Large
(SL), and Count Odds (CO)

Create two composite problems
C1: composite of SL and CSL
C2: composite of MD and CO

Subprograms by hand from simple problems (five for each)
For every composite problem, some subprograms in the
archive are helpful while the rest are unhelpful
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Pilot Experiments on Subprogram Selection Strategy

C1: given a string n, print “small” if len(n)< 1000 and “large” if
len(n)≥ 2000

Correct program: in_0 str_len 2000 int_gte exec_if (“large”

print_str) (in_0 str_len 1000 int_lt exec_if (“small” print_str))

Subprograms in the archive
SL: (exec_if), (in_0 2000 int_gte), (in_0 1000 int_lt),
(“small” print_str), (“large” print_str)
CSL: (in_0 str_len), (in_1 str_len), (in_2 str_len), (int_lt),
(bool_and)
CO: (in_0 vec_iter), (2 int_mod), (exe_if), (1 int_eq),
(int_inc)
MD: (int_min int_max), (int_max int_min), (in_0 in_1), (in_2),
(print_int)

39



Pilot Experiments on Subprogram Selection Strategy
Methods to compare

Adaptive selection of subprograms
Random selection of subprograms
Original PushGP[13] without using subprograms

Parameters
population size = 200, max generation = 300
50% time to do RM, 50% time to do UMAD[13]

ε = 0.5

Table: Number of Successful Runs in 21 Repetitions ( : p-value<0.05)

Method C1 C2

Adaptive Selection 8 8
Random Selection 0 1
Original PushGP 0 1

With adaptive selection, the algorithm
can discover the helpful subprograms
automatically
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Experiments on Sequential Problem-solving
Test problems

MD, CSL, and SL from the benchmark[14]

Every two simple problems, we make a composite problem
Median String Lengths (MSL), Small or Large Median (SLM),
Small or Large String (SLS)

Methods to compare
Proposed method: PushGP+ Even Partitioning + Adaptive
selection + Replacement Mutation (PushGP+EP+ARM)
Original PushGP[13]

Parameters
population size = 1000, max generation = 300
10% time to do RM, 90% time to do UMAD[13]

ε = 0.5
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Experiments on Sequential Problem-solving

Table: Simple → Complex: Number of Successful Runs in 25 Repetitions

Method MD CSL SL MSL SLM SLS
PushGP+EP+ARM 19 6 4 9 1 5
PushGP 18 8 7 4 0 1

Table: Complex → Simple: Number of Successful Runs in 25 Repetitions

Method SLS SLM MSL SL CSL MD
PushGP+EP+ARM 2 3 6 12 16 17
PushGP 1 0 4 7 8 18

Simple problems are not related
with each other; no helpful
subprograms in the archive

Complex problems are related
to simple problems; helpful
subprograms in the archive
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Summary of Case Study II

GP that improves itself when solving a sequence of many distinct
tasks

1 Applied the idea of adaptive transfer of genetic knowledge
2 Self-adaptive strategy to select helpful subprograms

More successful runs than random selection strategy
3 Implemented Knowledge-Driven Program Synthesis system

with PushGP+EP+ARM
Better than PushGP if there are helpful subprograms in the
archive
Worse than PushGP if there is no helpful subprograms
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Conclusions

Can EA learn and improve itself when solving a sequence of many
distinct tasks like a human?

Literature on multiple similar tasks
Genetic knowledge from past tasks

Main difficulty of many distinct tasks: unhelpful genetic knowledge
in the archive

By online search based on self-adaptive strategy, we can
automatically discover helpful genetic knowledge and improve the
performance of the EA
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Future Work: Adaptive Genetic Knowledge Transfer

EA

Task

SolutionSub-solution

Sub-solutions

ArchiveFiltered
Archive

extract

filter

select

utilize

feedback
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Details of Simple Problems

Median (MD): given three integers, print their median

Compare String Lengths (CSL): given three strings n1, n2, and n3,
return true if len(n1)< len(n2)< len(n3), and false otherwise

Small or Large (SL): given an integer n, print “small” if n < 1000
and “large” if n ≥ 2000 (and nothing if 1000≤ n < 2000)

Count Odds (CO): given a vector of integers, return the number of
integers that are odd, without use of a specific even or odd
instruction (but allowing instructions such as mod and quotient)
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Details of Composite Problems in Pilot Experiments

C1: given a string n, print “small” if len(n)< 1000 and “large” if
len(n)≥ 2000 (and nothing if 1000≤ len(n)< 2000)

C2: given a vector of three integers, return true if the median is
even and false if the median is odd, without use of a specific even
or odd instruction (but allowing instructions such as mod and
quotient)
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Details of Composite Problems in Experiments

Median String Length (MSL): given 3 strings, print the median of
their lengths

Small or Large Median (SLM): given 4 integers a, b, c, d , print
“small” if median(a,b, c)< d and “large” if median(a,b, c)> d
(and nothing if median(a,b, c) = d)

Small or Large String (SLS): given a string n, print “small” if
len(n)< 100 and “large” if len(n)≥ 200 (and nothing if
100≤ len(n)< 200)
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