
Adaptive Transfer of Genetic Knowledge in

Evolutionary Optimization and

Program Synthesis

March 2023

Yifan He

Adaptive Transfer of Genetic Knowledge in

Evolutionary Optimization and

Program Synthesis

Graduate School of Science and Technology

Degree Programs in Systems and Information Engineering

University of Tsukuba

March 2023

Yifan He

Abstract

A characteristic of human learning is the ability to obtain knowledge from tasks
solved in the past and apply the obtained knowledge when solving tasks in the
future. The learning behavior consecutively happens when a human solves endless
and distinct tasks during his/her lifetime. This learning ability allows humans to
solve more complex tasks.

Evolutionary Algorithms (EAs) are a group of methods that solve difficult
optimization problems. Traditionally, the performance of an EA is not influenced
by the tasks it has solved. In this dissertation, we discuss how to enhance an EA
with learning ability across many distinct tasks.

We first provide a definition of Genetic Knowledge Transfer (GKT) which refers
to the process where an EA is affected by the dynamics of another EA. Then, we
propose an Adaptive Genetic Knowledge Transfer (AGKT) system that allows the
adaptive transfer of the genetic knowledge obtained from many distinct past tasks.
The proposed method extracts sub-solutions from the solution to the solved tasks
and stores them in an archive. When solving a new task, the system selects proper
sub-solutions to reuse based on the similarity approach and the trial-and-error
approach.

We show two case studies that are related to GKT. The first case study aims to
solve a Multi-Objective Optimization Problem in Geosciences called Seismic His-
tory Matching (SHM). We propose a GKT method using Lexicase Selection (LS)
to solve the SHM problems. The proposed algorithm is tested on two SHM prob-
lems and compared with NSGA-II and RVEA. The results show that this method
achieves a better optimization performance and a concentrated final solution set in
the center of the Pareto Front, with fewer extreme solutions which would possibly
be non-physical.

Our second case study introduces a type of problem where a Genetic Program-
ming (GP) algorithm is required to solve a sequence of Program Synthesis (PS)
tasks. When solving a new task, GP uses the knowledge learned from previously
solved tasks. This problem is called Knowledge-Driven Program Synthesis (KDPS)
problem. To solve the KDPS problems, we propose a method based on PushGP to
solve PS tasks consecutively, extract subprograms from the solutions, and utilize
subprograms in the next task. The proposed method achieves a better success rate
when solving a sequence of PS problems, compared to the conventional PushGP
algorithm.

In conclusion, this dissertation defines GKT as a base for the learning ability
of EAs. We further develop the AGKT framework to enable effective GKT with
EAs during sequential task-solving. Finally, we present the initial implementation
of AGKT with GP to show the system’s viability.

Contents

Chapter 1 Introduction..1

1.1 Main Contributions ..1
1.2 Structure of the Dissertation ...5
1.3 List of Publications...6
1.4 List of Abbreviations ..7

Chapter 2 Evolutionary Computation with Multiple Tasks8

2.1 Evolutionary Computation ..8
2.2 Multi-Objective Optimization.. 10
2.2.1 Problem Description.. 10
2.2.2 Multi-Objective Evolutionary Algorithms.............................. 12
2.2.3 Multi-Objective Evolutionary Algorithm based on Decom-

position.. 13
2.3 Multi-Task Optimization... 16
2.3.1 Problem Description.. 16
2.3.2 Multi-Factorial Evolutionary Algorithm 18
2.3.3 Multi-Population Multi-Task Evolutionary Algorithms 19

2.4 Genetic Programming ... 21
2.4.1 Program Synthesis .. 21
2.4.2 Koza’s Tree-based Genetic Programming............................... 22
2.4.3 Modularity and Automatically Defined Function.................... 25
2.4.4 Multiple Tasks in Genetic Programming 29

Chapter 3 Genetic Knowledge Transfer.. 31

3.1 Definition .. 31
3.2 Examples in Multi-Objective Optimization 33
3.3 Examples in Multi-Task Optimization .. 35
3.4 Examples in Genetic Programming .. 36

Chapter 4 Adaptive Transfer of Genetic Knowledge 38

4.1 Naive Genetic Knowledge Transfer ... 38
4.2 Adaptive Genetic Knowledge Transfer System............................. 40
4.2.1 Solving Many Tasks in a Sequence.. 40
4.2.2 System Design .. 41

Chapter 5 Multi-Criteria Seismic History Matching 44

5.1 Introduction of the Case Study .. 44

i

5.2 Seismic History Matching.. 47
5.2.1 Problem Description.. 47
5.2.2 Multi-Objective Evolutionary Algorithms in Seismic His-

tory Matching Literature ... 47
5.3 Lexicase Selection... 50
5.3.1 Genetic Knowledge Transfer in Lexicase Selection 51

5.4 Differential Evolution based on Lexicase Selection 53
5.5 Experiments... 55
5.5.1 Test Problems .. 55
5.5.2 Experimental Methods .. 57
5.5.3 Experimental Results .. 58

5.6 Discussion.. 67
5.6.1 Distribution of distance to the ground truth 68
5.6.2 Performance in the prediction period 69

5.7 Conclusions of the Case Study ... 72

Chapter 6 Knowledge-Driven Program Synthesis........................ 74

6.1 Introduction of the Case Study .. 74
6.2 PushGP... 76
6.2.1 Push Language ... 76
6.2.2 PushGP with Uniform Mutation by Addition and Deletion..... 78

6.3 Incorporating Knowledge in Program Synthesis 79
6.4 Knowledge-Driven Program Synthesis... 80
6.4.1 Problem Description.. 80
6.4.2 Overview of the System Design .. 81
6.4.3 Even Partitioning.. 82
6.4.4 Replacement Mutation .. 82
6.4.5 Adaptive Selection .. 83

6.5 Experiments on Composite Problems ... 85
6.5.1 Experimental Methods .. 85
6.5.2 Experimental results ... 86

6.6 Experiments on Sequential Problems.. 88
6.6.1 Experimental Methods .. 88
6.6.2 Experimental results of Order 1.. 93
6.6.3 Experimental results of Order 2.. 93

6.7 Discussion.. 94
6.8 Conclusions of the Case Study ..101

Chapter 7 Conclusions..102

7.1 Automatic Discovery of Sub-tasks ...102
7.2 Summary of the Research...103

ii

7.3 Future Directions ..104

Acknowledgements ...106

Bibliography..107

iii

List of Figures

Figure 1.1 Quick view of the main contribution2

Figure 2.1 Important concepts in Multi-Objective Optimization............. 11
Figure 2.2 Tchebycheff decomposition with multiple weight vectors 15
Figure 2.3 A cloud service solving multiple tasks in parallel 16
Figure 2.4 Representation in Multi-Factorial Evolutionary Algorithm 18
Figure 2.5 An individual in tree-based Genetic Programming................. 22
Figure 2.6 One-point crossover for tree-based Genetic Programming....... 24
Figure 2.7 Uniform mutation for tree-based Genetic Programming 24
Figure 2.8 A comparison between code with/without using modules....... 26
Figure 2.9 A solution with Automatically Defined Functions.................. 27
Figure 2.10 Multiple tasks in Genetic Programming at different scales 29

Figure 3.1 Genetic Knowledge Transfer in MOEA/D 34
Figure 3.2 Genetic Knowledge Transfer in Multi-Task Optimization 35

Figure 4.1 Naive Genetic Knowledge Transfer....................................... 39
Figure 4.2 A cloud service solving multiple tasks in a sequence 40
Figure 4.3 Adaptive Genetic Knowledge Transfer System 42

Figure 5.1 Genetic Knowledge Transfer in Lexicase Selection 52
Figure 5.2 Parallel plot of non-dominated solutions on TS2N................. 58
Figure 5.3 Parallel plot of non-dominated solutions on Volve 60
Figure 5.4 Scatter plot of non-dominated solutions on Volve 61
Figure 5.5 FWPR by generations on TS2N .. 62
Figure 5.6 FOPR by generations on TS2N ... 62
Figure 5.7 FWPT by generations on TS2N .. 63
Figure 5.8 FOPT by generations on TS2N ... 63
Figure 5.9 FGPR by generations on TS2N ... 64
Figure 5.10 Seis-mean by generations on Volve....................................... 64
Figure 5.11 Seis-spa by generations on Volve.. 65
Figure 5.12 P-F-12 by generations on Volve ... 65
Figure 5.13 P-F-14 by generations on Volve ... 66
Figure 5.14 P-F-15C by generations on Volve... 66
Figure 5.15 Frequency of distance to ground truth.................................. 68
Figure 5.16 P-F-12 by generations in prediction on Volve 70

iv

Figure 5.17 P-F-14 by generations in prediction on Volve 70
Figure 5.18 Non-dominated solutions in prediction on Volve.................... 71

Figure 6.1 Addition Mutation in PushGP .. 78
Figure 6.2 Deletion Mutation in PushGP... 79
Figure 6.3 Knowledge-Driven Program Synthesis system 81
Figure 6.4 Anytime train error on MSL in Experiment I........................ 88
Figure 6.5 Anytime train error on SLM in Experiment I........................ 89
Figure 6.6 Anytime train error on SLS in Experiment I......................... 89
Figure 6.7 Anytime train error on MD in Experiment II with Order 1 95
Figure 6.8 Anytime train error on CSL in Experiment II with Order 1 ... 95
Figure 6.9 Anytime train error on SL in Experiment II with Order 1...... 96
Figure 6.10 Anytime train error on MSL in Experiment II with Order 1... 96
Figure 6.11 Anytime train error on SLM in Experiment II with Order 1... 97
Figure 6.12 Anytime train error on SLS in Experiment II with Order 1 97
Figure 6.13 Anytime train error on SLS in Experiment II with Order 2 98
Figure 6.14 Anytime train error on SLM in Experiment II with Order 2... 98
Figure 6.15 Anytime train error on MSL in Experiment II with Order 2... 99
Figure 6.16 Anytime train error on SL in Experiment II with Order 2...... 99
Figure 6.17 Anytime train error on CSL in Experiment II with Order 2 ..100
Figure 6.18 Anytime train error on MD in Experiment II with Order 2 ...100

v

List of Tables

Table 2.1 An example of Program Synthesis problem........................... 21

Table 5.1 Details of the Objectives in the TS2N problem 56
Table 5.2 Details of the Objectives in the Volve problem...................... 56
Table 5.3 Average distance to the ground truth on TS2N..................... 59
Table 5.4 Difference on set coverage on TS2N 59
Table 5.5 Average distance to the ground truth on Volve 59
Table 5.6 Difference on set coverage on Volve...................................... 59
Table 5.7 Difference on set coverage in prediction on Volve 69

Table 6.1 Train error on MSL in Experiment I 87
Table 6.2 Train error of SLM in Experiment I 87
Table 6.3 Train error on SLS in Experiment I 87
Table 6.4 Success count in Experiment I... 87
Table 6.5 Train error on MD in Experiment II with Order 1................. 91
Table 6.6 Train error of CSL in Experiment II with Order 1................. 91
Table 6.7 Train error on SL in Experiment I with Order 1.................... 91
Table 6.8 Train error on MSL in Experiment II with Order 1 91
Table 6.9 Train error of SLM in Experiment II with Order 1 91
Table 6.10 Train error on SLS in Experiment I with Order 1.................. 91
Table 6.11 Train error on SLS in Experiment I with Order 2.................. 92
Table 6.12 Train error of SLM in Experiment II with Order 2 92
Table 6.13 Train error on MSL in Experiment II with Order 2 92
Table 6.14 Train error on SL in Experiment I with Order 2.................... 92
Table 6.15 Train error of CSL in Experiment II with Order 2................. 92
Table 6.16 Train error on MD in Experiment II with Order 2................. 92
Table 6.17 Success count in Experiment II with Order 1 93
Table 6.18 Success count in Experiment II with Order 2 94

vi

List of Algorithms

Algorithm 2.1 Evolutionary Computation ..9
Algorithm 2.2 Multi-Objective EA based on Decomposition 15
Algorithm 2.3 Multi-population Multi-Task Evolutionary Framework 20
Algorithm 2.4 Tree-based Genetic Programming................................... 23

Algorithm 5.1 Automatic ϵ-Lexicase Selection 50
Algorithm 5.2 Differential Evolution based on Lexicase Selection 54

Algorithm 6.1 PushGP with Adaptive Replacement Mutation 84

vii

Chapter 1

Introduction

1.1 Main Contributions

Evolutionary Computation (EC) is a group of population-based search al-
gorithms that are frequently used for difficult optimization problems. The
recent EC community has shown an increasing interest in optimization prob-
lems with multiple objectives or tasks, such as Multi-Objective Optimization
(MOO) [1] and Multi-Task Optimization (MTO) [2]. These problems with
multiple tasks represent a majority of cases of the practical applications of
optimization and are hard to solve.

Similarly, humans solve a lot of tasks during their whole lives. Interest-
ingly, humans transfer the knowledge learned from one task to another. This
Knowledge Transfer (KT) helps solve the current task if this task is similar
to those tasks that have been solved in the past. KT techniques have been
frequently applied in our real life since the tasks seldom appear in isolation in
the real world. For instance, we learn knowledge about biological evolution
and apply it to create EC for solving engineering optimization problems.

However, KT is not a new word in the EC literature. KT has been
used in many studies in the field of MTO [3, 4] and Genetic Programming
(GP) [5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Most of these studies have
proposed to migrate good individuals or building blocks from an Evolutionary
Algorithm (EA) to another to improve the performance of the latter EA.
However, few of them provide a clear definition of their KT. In addition,
most of the prior works have focused their attention on the transfer among
a few similar tasks.

1

Feedback

EA

Task i

Extractor

Solution

Sub-
solutions

Filter
Archive

Selector

Filtered
Archive

UtilizerSub-solution

Sub-solutions from
Task 1 to Task i-1

Figure 1.1: Quick view of the main contribution: the Adaptive Genetic Transfer
system. The details of this system are introduced in Chapter 4.

Adaptive Genetic Knowledge Transfer This dissertation first provides
a clear definition of Genetic Knowledge Transfer (GKT) shown in Figure 1.1
which refers to the process where an EA is affected by the dynamics of another
EA. After that, the dissertation describes a scenario where an EA is run on
a cloud service. Users consecutively pose optimization tasks to this solver.
After a long time, the EA on the cloud is then required to solve an endless
sequence of distinct tasks, just like a human. It is then very natural to come
up with the following question: can an EA solve a sequence of many distinct
tasks and improve itself through the sequential problem-solving by using the
idea of GKT?

One vital difference between this study and prior works on GKT is the
larger number of tasks to solve and the dissimilarity between these tasks.
Therefore, simple methods such as migrating the best individuals or reusing
final populations might not work well, since there are a lot of tasks that are
not related to the current one.

Therefore, this study proposes an Adaptive Genetic Knowledge Transfer
(AGKT) system that allows the adaptive transfer of the genetic knowledge
obtained from many distinct past tasks. The proposed method extracts sub-
solutions from the solution to the solved tasks and stores them in an archive.

2

These sub-solutions are processed genetic knowledge. When solving a new
task, the system selects proper sub-solutions based on two approaches: 1)
similarity-based approach and 2) trial and error approach. The similarity
approach refers to a filter that creates a subset of the archive to include sub-
solutions from the tasks with high similarity to the current task. However,
this approach requires a measure of similarity between tasks. The trial and
error approach selects sub-solutions from the archive and uses them with the
EA. The probability of selecting a sub-solution is then updated based on the
feedback from the EA.

With this AGKT system, the EA can solve harder tasks with the sub-
solutions extracted from simple tasks. Moreover, this system might be able
to discover some unexpected helper tasks to improve performance.

Multi-Criteria Seismic History Matching This dissertation provides
two case studies that are related to the topic of GKT. The first case study
aims to solve an optimization task called Seismic History Matching (SHM) [17].

SHM is a key problem in Geosciences that aims to find a mathematical
model of the subsurface to match the simulation data with the real records.
In SHM, multiple types of data are used and thus SHM is a problem with
multiple objective functions where each objective is to minimize the difference
between a type of simulation and real data.

This problem is usually modeled as MOO, which focuses on the trade-
off between the objectives and is solved by Multi-Objective Evolutionary
Algorithms (MOEAs). However, there is only one true model of a specific
subsurface in interest. This true model should minimize all the objectives
at the same time. In other words, a model that minimizes some objectives
but performs worse on others is possibly unphysical. Therefore, a “trade-
off” relationship might not be a proper assumption in the SHM problems.
As a result, the improper use of MOEAs on this problem may waste the
computational budget to search some unpromising areas such as extreme
points.

On the contrary, GKT might be able to apply to this problem since the
objectives share the same optimal solution and are from the measure of the
same physics. The genetic knowledge from solving one of the objectives in
the SHM problem should help to solve the optimization of another objective.

This study proposes a GKT method [18] using Lexicase Selection (LS) [19]

3

on the SHM problems. LS filters the solutions based on a shuffled arrange-
ment of all objectives so that it can drive the solutions to a better quality in
all objectives at the same time while providing enough diversity during the
search process.

The proposed algorithm [18] is tested on two SHM problems and com-
pared with two well-known MOEAs, NSGA-II [20] and RVEA [21]. The
results are discussed from various perspectives, including the distance to
the ground truth, the difference in set coverage, the distribution of the non-
dominated solutions, as well as the prediction performance. Our experiments
show that this method achieves a better optimization performance and a
concentrated final solution set in the center of the Pareto Front, with fewer
extreme solutions which would possibly be non-physical.

Knowledge-Driven Program Synthesis Human programmers can learn
from the programming problems that they have solved before and apply
what they have learned to solve upcoming problems. This ability of learning
is based on the relationship between problems and is vital for generating
complex programs. Therefore, this second case study introduces a type of
task where an agent is required to solve a sequence of Program Synthesis
(PS) problems. When solving a new problem, the agent should use the
knowledge learned from previously solved problems. This task is called the
Knowledge-Driven Program Synthesis (KDPS) problem [22] and is a practice
of the research question that we proposed in the previous paragraph.

To solve the KDPS problems, this study proposes a method [22] based
on PushGP [23] to consecutively solve programming tasks, extract genetic
knowledge from the solutions, and utilize genetic knowledge in the next prob-
lem. This proposed method is an application of our AGKT system in the PS
field.

Our proposed method [22] uses subprograms, the sub-sequences of Push
instructions, as processed genetic knowledge. The subprograms hold partial
information about the original program. Moreover, any sequence of Push
instructions is valid to run. Therefore, the proposed method can easily take
a subprogram and use it to mutate a different program. Even Partitioning
(EP) is proposed to extract subprograms from a solution. EP simply di-
vides a solution into several partitions with equal lengths and stores them
in an archive for later use. Adaptive Replacement Mutation (ARM) takes
a piece of subprogram in the archive by probability and replaces a part of

4

the instructions of the parent solution with this subprogram. The probabil-
ity to select subprograms is determined by the feedback of the replacement
mutation in a self-adaptive manner. Our proposed method achieves a bet-
ter success rate when solving a sequence of PS problems, compared to the
conventional PushGP algorithm.

1.2 Structure of the Dissertation

This dissertation is organized as follows.

Chapter 2 introduces EC with multiple tasks, namely MOO, MTO, and
GP. For every category of EC, we provide general background on the problem
formulation and the frequently used algorithms to solve this problem.

Chapter 3 provides a clear definition of GKT. Several examples of GKT
in the EC literature are used for easy understanding, including GKT in MOO,
GKT in MTO, and GKT in GP.

Chapter 4 first illustrates a future scenario where an EA is hosted on a
cloud service to solve a sequence of many distinct tasks from the users. This
chapter then comes up with the research question of how an EA improves
itself during solving this sequence of tasks. As a solution, the overall design
of the AGKT system is proposed and the possible design of the components
is explained.

Chapter 5 is a case study of GKT for solving SHM problems. The chap-
ter provides sufficient background on the SHM problem and the related works
on solving SHM with MOEAs. The limitation of the prior methods is then
discussed. Following the limitation of the prior studies, we propose a method
using LS to solve the SHM problems. We provide an explanation of how LS
performs GKT implicitly. After that, the simulation results are presented in
the later sections to show the superiority of our proposed method.

Chapter 6 is a practice of our conceptual design of the AGKT system
for solving PS problems. We propose a variant of the traditional PS problem
where a GP algorithm is asked to solve a sequence of PS tasks using the
idea of GKT. We demonstrate a method that is an implementation of the
AGKT system with GP. This method uses subprograms as genetic knowledge
and transfers them properly based on an adaptive selection method. The
proposed method is tested to solve a sequence of six PS problems.

5

Chapter 7 summarizes the whole dissertation and points out several
future routines.

1.3 List of Publications

Journals

Yifan He, Claus Aranha, Antony Hallam, and Romain Chassagne. Opti-
mization of subsurface models with multiple criteria using lexicase selection.
Operations Research Perspectives, 9:100237, 2022.

Antony Hallam, Romain Chassagne, Claus Aranha, and Yifan He. Compar-
ison of map metrics as fitness input for assisted seismic history matching.
Journal of Geophysics and Engineering, 19(3):457–474, 2022.

Yifan He and Claus Aranha. Solving portfolio optimization problems using
moea/d and lévy flight. Advances in Data Science and Adaptive Analysis,
12(03n04):2050005, 2020.

Peer-Reviewed International Conferences

Yifan He, Claus Aranha, and Tetsuya Sakurai. Knowledge-driven program
synthesis via adaptive replacement mutation and auto-constructed subpro-
gram archives. In 2022 IEEE Symposium Series on Computational Intelli-
gence (SSCI), pages 14–21. IEEE, 2022.

Yifan He, Claus Aranha, and Tetsuya Sakurai. Incorporating sub-programs
as knowledge in program synthesis by pushgp and adaptive replacement mu-
tation. In Proceedings of the Genetic and Evolutionary Computation Con-
ference Companion, pages 554–557, 2022.

Yifan He, Claus Aranha, and Tetsuya Sakurai. Parameter evolution self-
adaptive strategy and its application for cuckoo search. In International
Conference on Bioinspired Methods and Their Applications, pages 56-68.
Springer, 2020.

Non Peer-Reviewed Conferences

Yifan He and Claus Aranha. Solving multi-objective optimization problems
with differential evolution and lexicase selection. In 19th Symposium of the
Japanese Society of Evolutionary Computation, Online, 2021.

6

Yifan He and Claus Aranha. Evolving stability parameters of lévy flight in
cuckoo search. In 17th Symposium of the Japanese Society of Evolutionary
Computation, Tokyo, 2020.

1.4 List of Abbreviations

AAMTEAAdaptive Archive-based Many-Task Evolutionary Algorithm
ADF . Automatically Defined Function
AGKT . Adaptive Genetic Knowledge Transfer
ARM . Adaptive Replacement Mutation
CSL . Compare String Lengths
EA . Evolutionary Algorithm
EC . Evolutionary Computation
EP . Even Partitioning
GKT . Genetic Knowledge Transfer
GP . Genetic Programming
GPSB . General Program Synthesis Benchmark
KDPS . Knowledge-Driven Program Synthesis
KT . Knowledge Transfer
LS .Lexicase Selection
MD . Median
MFEA .Multi-Factorial Evolutionary Algorithm
MMTEF Multi-population Muti-Task Evolutionary Framework
MOEA .Multi-Objective Evolutionary Algorithm
MOEA/D . MOEA based on Decomposition
MOO .Multi-Objective Optimization
MSL . Median String Length
MTEA .Multi-Task Evolutionary Algorithm
MTO .Multi-Task Optimization
NGKT .Naive Genetic Knowledge Transfer
NSGA-II . Non-dominated Sorting Genetic Algorithm II
OP .Optimization Problem
PF . Pareto Front
PS .Program Synthesis
RM .Replacement Mutation
SL . Small or Large
SLM .Small or Large Median
SLS . Small or Large String

7

Chapter 2

Evolutionary Computation with Multiple Tasks

In this chapter, we review important concepts necessary for the development
of the thesis. Optimization with multiple tasks represents a majority of the
application in the real world and thus is essential for many fields such as
engineering, management science, and scientific research.

We first introduce Evolutionary Computation (Section 2.1). After that,
we go through two categories of optimization problems that contain more
than one objective function, namely Multi-Objective Optimization (Sec-
tion 2.2) and Multi-Task Optimization (Section 2.3). Then, we review
Genetic Programming, an algorithm proposed to generate computer pro-
grams (Section 2.4). We provide some cases of how this algorithm solves
multiple tasks at the same time.

Despite the problems and the algorithms in the above paragraph, there
are other problem formulations considering multiple tasks, such as Multi-
Level Optimization. Readers interested in this topic can refer to the review
work by Gupta and Ong [24] for further details.

2.1 Evolutionary Computation

An Optimization Problem (OP) is the problem to find the best solution in a
set of feasible solutions. We model real-world problems as OP in many fields
such as engineering, management science, finance, and scientific research. A
minimization problem is usually formulated as in (2.1). f is the objective
function and x is a solution candidate containing n decision variables. gi and

8

Algorithm 2.1: The typical procedure of Evolutionary Computation

1 X ← initialize();
2 repeat
3 P ← select(X);
4 X ← update(P);

5 until termination criteria are satisfied;

hj are the constraints of the problem.

minimize f(x)

s.t. x = (x1, . . . , xn)

gi(x) ≤ 0, i = 1, . . . , p

hj(x) = 0, j = 1, . . . , q

(2.1)

Evolutionary Computation (EC) or Evolutionary Algorithms (EAs) are
a group of algorithms to solve OPs by mimicking the process of natural evo-
lution and the population behavior of creatures. It uses the intuition of how
creatures evolve to adapt to the environment and how creatures solve a task
based on self-organization. In general, EC starts with a random population
of solution candidates. Then, EC consecutively selects candidates with high
quality and updates them until the optimal solution to the problem is found.
This typical procedure of EC is shown as in Algorithm 2.1. In this proce-
dure and other EA descriptions in this dissertation, we omit the step that
evaluates the fitness values of the solutions.

Most of the EAs are gradient-free and thus could be applied to solve
discrete or black-box OPs. Moreover, the use of global search operators al-
lows EC to escape from the local optima during optimization. With these
advantages, many EAs (e.g., Genetic Algorithm [25], Particle Swarm Opti-
mization [26], and Differential Evolution [27]) have been proposed to solve a
variety of difficult OPs. These problems vary from continuous function opti-
mization to real-world applications, such as optimizing the structure design
of cars [28] and estimating the mathematical model of the subsurface [17].

Additionally, EC allows us to study OPs with more advanced formu-
lations. In this dissertation, we focus on the OPs with multiple tasks or
objective functions that are solved simultaneously. Compared to OPs with
only one task, these problems represent a major number of applications;
however, they are harder to solve. The rest of this chapter introduces three

9

scenarios where EC deals with more than one task, namely Multi-Objective
Optimization (Section 2.2), Multi-Task Optimization (Section 2.3), and
Genetic Programming (Section 2.4).

2.2 Multi-Objective Optimization

2.2.1 Problem Description

Multi-Objective Optimization (MOO) [1] might be the most well-known
problem formulation that optimizes multiple tasks. A MOO problem con-
tains several objectives that are trade-offs with each other. In other words,
the optimal solution to these objectives cannot be achieved at the same time.
A minimization MOO problem in (2.2) minimizes allm objectives at the same
time (Ω is the feasible region determined by constraints).

minimize f(x)

s.t. f = (f1, . . . , fm)

x = (x1, . . . , xn) ∈ Ω

(2.2)

Domination defines “betterness” under multiple criteria and is one of the
key concepts in MOO. A solution x dominates another solution y if and only
if x is non-worse than y on all the objectives, and x is strictly better than
y on at least one of the objectives. (2.3) provides a mathematical definition
of domination in the minimization MOO problem, where the symbol “≺”
means “dominate”.

f(x) ≺ f(y) ⇐⇒ ∀i ∈ {1, . . . ,m}, fi(x) ≤ fi(y)

∃i ∈ {1, . . . ,m}, fi(x) < fi(y)
(2.3)

After we define domination as the “betterness” in MOO, it is not hard
to realize that the optimal solutions in MOO are the solutions that are not
dominated by any other solutions or the non-dominated solutions of the
feasible region. We call these trade-off solutions Pareto Front (PF).

These important concepts are illustrated in Figure 2.1. f1 and f2 are
minimization objectives. The circle area shows the feasible region of this
problem. The three points A, B, and C are the objective vectors of three
solutions. A dominates B but does not dominate C (since C holds a better

10

Feasible
Region

A

C

B

P

Q
f1

f2

O

Figure 2.1: Important concepts in Multi-Objective Optimization. f1 and f2 are
minimization objectives. A dominates B but does not dominate C. The curve
PQ is the Pareto Front of this problem. P and Q are extreme points and are the
optimal solutions of f1 and f2, respectively.

11

value on f2 compared to A). The curve PQ is the PF of this MOO problem.
P and Q are extreme points and are the optimal solutions of f1 and f2,
respectively.

The MOO problem formulation represents a large group of OPs in the
real world. We take the Portfolio Optimization (PO) [29] in the financial
engineering field as an example. The goal of PO is to find a combination of
available assets (e.g., stocks) to get the maximum return with the minimum
risk. However, higher return often comes together with higher risk. This
investment characteristic leads to the trade-off between the two objectives in
PO, and therefore PO is an application of MOO.

The traditional approach to deal with multiple objectives is to do a
weighted sum scalarization to the objectives. However, a portfolio man-
ager cannot know the preference between return and risk until a specific user
comes. In fact, even the user himself/herself cannot assign accurate weights
to the two objectives. MOO addresses these issues by retrieving a set of
trade-off solutions to represent the entire PF. The user will then look at
the simulation results of all solutions to make a further decision. Therefore,
MOO is more objective and accurate compared to the traditional weighted
sum approach.

In spite of PO, the MOO formulation has been applied in many fields,
including but not limited to engineering [28], finance [30], management sci-
ence [31], and transportation [32].

2.2.2 Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAs) are the EAs that solve
MOO problems. The selection operators in MOEAs are designed to interact
with multiple objectives. These special designs could be classified into three
categories: 1) indicator-based approach, 2) domination-based approach, and
3) decomposition-based approach.

The indicator-based MOEAs define their selection mechanism based on
quality indicators that assess the performance of the solution set, such as
Hypervolume [33] and Invert Generation Distance [34]. These MOEAs opti-
mize the indicator value during the evolutionary processes. Readers who are
interested in this category of algorithms could refer to a recent survey [35].

12

The domination-based MOEAs use the definition of domination to select
parent candidates. The most representative Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [20] uses fast non-dominated sorting to rank the
individuals. This sorting method assigns Rank 1 to the non-dominated so-
lutions of the population. After that, it consecutively excludes the ranked
solutions and assigns an increased rank to the non-dominated solutions of the
rest individuals. Despite the domination-based ranking, this type of MOEA
usually contains an operator to maintain the diversity of the population to
cover the entire PF (e.g., crowding distance assignment in NSGA-II [20]).

The decomposition-based MOEAs transform the original MOO prob-
lem into several single-objective sub-problems and optimize them simulta-
neously. Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [36] is the first proposed algorithm in this group. In Sec-
tion 3.2, we will discuss the Genetic Knowledge Transfer in decomposition-
based MOEAs, with the example of MOEA/D. Therefore, the next section
provides a detailed introduction and the pseudocode of MOEA/D [36] in Al-
gorithm 2.2.

2.2.3 Multi-Objective Evolutionary Algorithm based
on Decomposition

MOEA/D [36] uses a set of weight vectors to transform a MOO problem
into a set of single-objective problems. This step is called decomposition.
To illustrate the idea of decomposition, we first look at the most simple
decomposition method, the weighted sum approach.

For example, we have a bi-objective MOO problem where f = (f1, f2) and
we are given with a set of weight vectors V = {v1, . . . ,v6} = {(i5 , 1−

i
5
)}5i=0.

Based on the weighted sum approach, we can decompose f into six single-
objective optimization problems as in (2.4). The optimal solutions to these
sub-problems form an approximated PF of the original MOO problem.

g1(x) = 0.0 · f1(x) + 1.0 · f2(x)
g2(x) = 0.2 · f1(x) + 0.8 · f2(x)
g3(x) = 0.4 · f1(x) + 0.6 · f2(x)
g4(x) = 0.6 · f1(x) + 0.4 · f2(x)
g5(x) = 0.8 · f1(x) + 0.2 · f2(x)
g6(x) = 1.0 · f1(x) + 0.0 · f2(x)

(2.4)

13

In MOEA/D [36], these sub-problems are optimized simultaneously in
a single algorithm run. Every individual in the population of MOEA/D
corresponds to one of the sub-problems. That is, the population size of
MOEA/D is the same as the number of the weight vectors and the sub-
problems. In the previous example, a population including six individuals
x1, . . . ,x6 is used, and xi is optimized as the solution of gi in (2.4).

Algorithm 2.2 presents the standard procedure of MOEA/D [36]. The
weight vector set V is provided by users or generated by algorithms such as
the Das-Dennis method [37]. The dimension of the weight vectors is equal
to the number of objective functions. B represents a map from the index of
a solution to the indexes of its neighbor solutions.

To perform the decomposition step, this standard procedure employs
the Tchebycheff decomposition approach in (2.5). This approach requires
a weight vector v and a reference point z∗ to create a sub-problem. For an
m-objective minimization MOO problem, the component z∗k is the minimum
objective value of fk in the population. With a set of weight vectors, the
Tchebycheff decomposition approach transforms the original problem into
several sub-problems, to which the solutions are the cross points between the
PF and the lines determined by the weight vectors and the reference point.
Figure 2.2 illustrates an example of Tchebycheff decomposition with six
weight vectors.

minimize gtch(x | v, z∗) = max
k=1,...,m

{vk|fk(x)− z∗k|}

s.t. x = (x1, . . . , xn)

v = (v1, . . . , vm)

z∗ = (z∗1 , . . . , z
∗
m)

z∗k = min
xl∈X

fk(xl)

(2.5)

To generate the child of xi, MOEA/D [36] randomly select two parents
from the neighbor solutions of xi. The standard reproduction step uses sim-
ulated binary crossover [38, 39] and polynomial mutation [39]. After that,
MOEA/D [36] updates the reference point z∗ if the child y holds a smaller
objective value in any of the objectives. This child y is then compared with
all the neighbor solutions of xi based on the Tchebycheff decomposition cost
gtch. The neighbor solution is updated to y if it is worse than y in terms of
the decomposition cost (Line 8 and Line 9).

14

f1

f2

O

v1

v2

v3

v4

v5

v6
z*

Figure 2.2: Tchebycheff decomposition with multiple weight vectors. The curve
is the PF of a minimization MOO problem. v1 to v6 are six weight vectors and
z∗ is the reference point. The Tchebycheff decomposition transforms the original
problem into six sub-problems, to which the solutions are the cross points between
the PF and the lines determined by {v1, . . . ,v6} and z∗.

Algorithm 2.2: The pseudocode of Multi-Objective Evolutionary Algo-
rithm based on Decomposition

input : weight vectors V = {v1, . . . ,vN}, neighborhood relation B
output: final population X

1 X ← initialize();
2 repeat
3 foreach xi in X do
4 a, b← random-select(B(i));
5 y← reproduce(xa,xb);
6 z∗ ← update-reference-point(z∗, f(y));
7 foreach j in B(i) do
8 if gtch(y | vj, z

∗) ≤ gtch(xj | vj, z
∗) then

9 xj ← y;

10 until termination criteria are satisfied;
11 return X;

15

User 1 User 2

User 3User 4

Task 1 Task 2

Task 3 Task 4

Solver

Figure 2.3: A cloud service solves multiple tasks in parallel. These tasks are
from different users but at the same time. This scenario is considered a typical
application of Multi-Task Optimization.

2.3 Multi-Task Optimization

2.3.1 Problem Description

The practical motivation for Multi-Task Optimization (MTO) [2] has derived
from the scenario in Figure 2.3 that a cloud service provides users with
access to a solver. Naturally, this solver deals with multiple optimization
tasks received from multiple users at the same time. These tasks can belong
to either similar or entirely different domains. In MTO [2], multiple tasks
are solved concurrently, exploiting the common knowledge between them.

An illustrative example of the tasks in MTO [2] could be shopping dis-
count maximization under a limited budget and portfolio return maximiza-
tion under limited risk. The first problem tries to maximize the discount
value (i.e., the amount of saved money) considering a set of available items
and a maximum budget. This problem is an Integer Knapsack Problem.
Meanwhile, the second problem aims to find a combination of investment
ratios and is a practice of the Fractional Knapsack Problem. Certainly, the

16

two tasks are in different domains; however, we can solve them in parallel
since both of them belong to the larger category of the Knapsack Problem.

The MTO [2] withm tasks could be formulated as follows. In MTO, there
are m tasks (T1, . . . , Tm) in total. The objective functions of these tasks are
f1, . . . , fm. x

k represents the solution of the k-th task. It contains nk decision
variables and the corresponding feasible region is denoted as Ωk. The optimal
solution to the k-th task is xk

∗ and the optimal solution set of MTO consists
of the optimal solutions for every task. Unlike MOO (Section 2.2), MTO
does not focus on the trade-off between tasks.

minimize f1(x
1), . . . , fm(x

m)

s.t. xk = (xk
1, . . . , x

k
nk
) ∈ Ωk

k = 1, . . . ,m

(2.6)

Many studies have worked on MTO applications in the real world. Wei et al.
categorize these works into the following four types [4].

• The first type is using easy tasks to help with complex tasks. For in-
stance, a study [40] has solved an Even Parity Problem by incorporating
its smaller variants.

• The second type converts bi-level OPs into MTO [41]. A bi-level OP
is a problem where a lower-level task is embedded in another upper-
level task and the upper-level task takes the optimal solution of the
lower-level task as a part of the problem formulation. Therefore, an
inaccurate solution to the lower-level task may cause a misleading es-
timation of the upper-level objective function. The MTO allows the
parallel solving of the two levels of the tasks, considering the connection
between them.

• In the third type of MTO, the multiple tasks share similar decision
variables or structures, such as optimizing the parameters of a neural
network for distinct deep learning tasks [42] and solving several image
feature learning tasks with Genetic Programming [43].

• The last type of applications groups the tasks with similar properties.
The review paper by Wei et al. [4] has listed a group of studies in
this category, such as solving the car structure design problem [28]
as MTO [44] where cars of distinct types are believed to share some
commonalities.

17

1 1 1 0 0 0 2 0

1.23 1.10 1.45 0.33 0.00 0.98

1.23 1.10 1.45 0.33 0.00 0.98 2.02 0.50

Solution in MFEA with unified representation

Solution to Task 1 (8-D integer search space)

Solution to Task 2 (6-D continuous search space)

Figure 2.4: An example of unified representation in Multi-Factorial Evolutionary
Algorithm (MFEA). The solution in MFEA is encoded with a unified representa-
tion. This solution could be mapped into solutions of two different tasks: 1) 8-D
integer search space by truncating fractions; 2) 6-D continuous search space by
truncating the last two dimensions.

2.3.2 Multi-Factorial Evolutionary Algorithm

Multi-Task Evolutionary Algorithms (MTEAs) are EAs that solve MTO.
MTEAs could be divided into two categories: single-population methods
and multi-population methods.

Multi-Factorial Evolutionary Algorithm (MFEA) [2] is a single-population
method to solve MTO. The decision variables of different tasks are mapped
into a unified representation. Figure 2.4 shows a unified representation of a
MTO problem with two tasks. The solution in MFEA [2] could be mapped
into a solution in 8-D integer search space by truncating the fractions and
a solution in 6-D continuous search space by truncating the last two dimen-
sions. Therefore, by optimizing the solution in the unified representation, we
could optimize two tasks across the domains.

By sharing the same unified representation, MFEA implicitly explores the
common building blocks of each task. MFEA returns an optimal solution in

18

the unified representation. This solution holds the optimal objective values
on all tasks.

MFEA transforms a vector of multiple objective values to a scalar fitness
based on steps in (2.7) and (2.8).

Ψk(x) = fk(x) + λ · δk(x) (2.7)

ϕ(x) = 1/ min
k=1,...,m

rk(x) (2.8)

First, the objective fk and the constraint violent δk of k-th task are aggre-
gated into a factorial cost Ψk using a penalizing multiplier λ. Then, the
factorial rank rk(x) is calculated as the rank of this factorial cost of an indi-
vidual x in the entire population in ascending order. For a specific individual
x, there are m factorial ranks in total. The scalar fitness ϕ(x) of this indi-
vidual x is the inverse of the minimal factorial rank among the m ranks.

The skill factor in (2.9) is another important concept in MFEA [2]. It
indicates the task where an individual x holds the minimal factorial rank
among all m tasks. In other words, the skill factor shows the most “skillful”
task of an individual.

τ(x) = argmin
k=1,...,m

rk(x) (2.9)

In MFEA [2], two parents are randomly selected to reproduce their chil-
dren. MFEA performs a crossover process if the two parents hold the same
skill factor (i.e., they are good solutions for the same task) or within a proba-
bility. Otherwise, the two parents will go through mutation steps separately.
This design shares a similar idea of speciation. After reproducing the off-
spring population, MFEA merges the offspring and parent population. A
survival selection is then performed based on the scalar fitness values. The
details of this algorithm could be found in its original publication [2].

2.3.3 Multi-Population Multi-Task Evolutionary
Algorithms

Though the pioneering MFEA [2] uses a single population, many of the MTO
studies propose and apply multi-population methods [45, 3, 46, 47, 48, 49].
Multi-population Multi-Task Evolutionary Framework (MMTEF) [45, 46] is
a representative framework among this group. As shown in Algorithm 2.3,
MMTEF maintains several sub-populations and uses each sub-population

19

Algorithm 2.3: The procedure of Multi-population Multi-Task Evolu-
tionary Framework

1 foreach task Ti in {T1, . . . , Tm} do
2 Xi ← initialize();

3 repeat
4 foreach task Ti in {T1, . . . , Tm} do
5 Pi ← ∅;
6 while |Pi| < |Xi| do
7 if rand() < α then
8 xi,1,xi,2 ← select(Xi);
9 else

10 xi,1,xi,2 ← select(
⋃K

i=0Xi);

11 x′
i,1,x

′
i,2 ← crossover(xi,1,xi,2);

12 Pi ← Pi ∪ {x′
i,1,x

′
i,2};

13 foreach task Ti in {T1, . . . , Tm} do
14 Pi ← local-improve(Pi);
15 Xi ← Pi;

16 until termination criteria are satisfied;

Xi to solve a task Ti. Building blocks of the solutions (i.e., a fraction of the
genome) are transferred from one sub-population to another via a crossover
operator that takes parents from different sub-populations with a probability
α (line 7 to line 11). A local improvement is then performed on the solutions
in all sub-populations following the crossover. This step could apply either
problem-specific heuristics or mutation methods (line 15).

On the one hand, the multi-population approaches are easier to under-
stand and control the evolutionary process compared with single-population
MTEAs. Researchers have developed control techniques, including resource
allocation [47] and cross-task interaction [3, 48], for multi-population MTEAs.
On the other hand, the multi-population approaches require setting sev-
eral ad-hoc parameters such as the size of the sub-populations; while these
parameters are automatically adjusted through the evolutionary process in
single-population methods such as MFEA [2].

Knowledge Transfer (KT) is a frequently used term in the research of
multi-population MTEAs. In the literature of MTO, it refers to the move-
ment of building blocks of the solution from one sub-population to another.

20

Table 2.1: An example of Program Synthesis problem. In this problem, the user
gives three IO cases. Each IO case includes two inputs and one output. The
available instructions are ADD, SUB, MULT, DIV, ARG0, and ARG1.

Input Ouput Instructions

1, 2 9 ADD SUB MULT DIV
ARG0 ARG15, 6 121

10, 0 100

Similarly, this dissertation focuses on the adaptive transfer of genetic knowl-
edge in the EAs. The difference and connection between our works and the
KT in the MTO literature are discussed in Section 3.3 and Section 4.2.

2.4 Genetic Programming

2.4.1 Program Synthesis

Genetic Programming (GP) is a group of EAs proposed to create computer
programs [50, 51, 52]. Such an application is called Program Synthesis (PS)
and is defined as follows.

PS aims to find a sequence of instructions from an available set to pass a
set of Input-Output (IO) cases. This problem is usually modeled as an OP
in (2.10) to minimize the difference between the actual output p(ini) and the
expected output outi of the program p. PINSTR includes all possible programs
determined by the instruction set INSTR (also called primitive set). In PS,
the solution program requires satisfying a set of m IO cases.

minimize {||p(ink)− outk ||}mk=1

s.t. p ∈ PINSTR

(2.10)

Obviously, there are totally m minimization objective functions in (2.10).
Thus, we consider the PS problems that GP solves as OPs with multiple
tasks. Unlike MOO in Section 2.2, these objectives are not trade-offs, since
the optimal solution minimizes all of them.

Table 2.1 gives an example of the PS problem. In this problem, the user
gives three IO cases. Each IO case includes two inputs and one output. The
available instructions are ADD, SUB, MULT, DIV, ARG0, and ARG1. One of the

21

PRINT

ADD

ARG0 MULT

ARG0 2

Figure 2.5: An individual in tree-based Genetic Programming. This individual
represents the program PRINT(ADD(ARG0,MULT(ARG0,2))).

possible programs is MULT(ADD(ARG0,ARG1),ADD(ARG0,ARG1)).

With computer programs, we are able to automate many processes. In
fact, many applications of GP are variants of the PS problem, including
symbolic regression [53, 54], circuit design [55, 56], robotics design [57, 58],
artificial neural network design [59, 60, 61], trading rule extraction [62, 63,
64], and image classification [65, 66].

2.4.2 Koza’s Tree-based Genetic Programming

As mentioned in the last subsection, GP is a method to solve PS problems
in the EC literature. One of the major contributions of this dissertation is
related to a GP variant called PushGP [67]. However, before moving on to
this GP variant, we first review Koza’s original work on the tree-based GP
algorithm [50]. The background on PushGP [67] is presented in Chapter 6.

In Koza’s initial work [50], a program is encoded as a tree, where a par-
ent node takes its child nodes as arguments. The program output is the
computation result of the root node. The tree-based GP [50] maintains a
population of programs and evolves them through an evolutionary process.

22

Algorithm 2.4: The pseudocode of tree-based Genetic Programming

input : population size N , crossover rate pc, mutation rate pm, and
maximum tree depth dmax

output: final population X
1 X ← initialize(N);
2 repeat
3 X ′ ← ∅;
4 while |X ′| < N do

/* tournament selection */
5 xa,xb ← tournament-select(X);

/* one-point crossover */
6 if rand() < pc then
7 x′

a,x
′
b ← one-point-crossover(xa,xb);

/* uniform mutation */
8 if rand() < pm then
9 x′

a ← uniform-mutate(x′
a);

10 if rand() < pm then
11 x′

b ← uniform-mutate(x′
b);

/* bloat control */
12 if depth(x′

a) > dmax then
13 x′

a ← xa;

14 if depth(x′
b) > dmax then

15 x′
b ← xb;

16 X ′ ← X ′ ∪ {x′
a,x

′
b};

17 X ← X ′;

18 until termination criteria are satisfied;
19 return X;

23

p1

p2

c1

c2

One-point
Crossover

Figure 2.6: One-point crossover for tree-based Genetic Programming. p1 and
p2 are two parent candidates. The subtrees under the dashed lines are exchanged
during the crossover to generate child candidates c1 and c2.

p

s

c

Uniform
Mutation

Figure 2.7: Uniform mutation for tree-based Genetic Programming. p is a parent
candidate. To generate the child candidate c, the subtree under the dashed line is
replaced by a randomly created tree s.

24

A typical tree-based GP (Algorithm 2.4) uses tournament selection, one-
point crossover, and uniform mutation. Additionally, the tree-based GP
contains a bloat control technique to prevent the unlimited increase of the
tree size during the evolution.

• The tree-based GP generates a population of random programs using
the available primitives (or instructions) during the initialization phase.

• In the tournament selection, the differences between actual and ex-
pected outputs in m IO cases are summed together as the fitness value
of the program. The tournament selection randomly selects a subset
of the population and takes the individual with the best fitness in this
subset as the selected candidate.

• To perform one-point crossover (Figure 2.6), two parents are selected.
The algorithm selects a random subtree of each parent and exchanges
these subtrees to reproduce two child candidates.

• The uniform mutation (Figure 2.7) only requires one parent candi-
date. This operator selects a random subtree of the parent candidate
and replaces the subtree with a randomly generated tree.

• The individuals in GP have variable sizes. For example, the uniform
mutation can either increase or decrease the size of the tree. Bloat is
an issue when the tree size increases without a limitation. The bloat
causes two problems: 1) a long time to evaluate a program and 2) a
large search space. A frequent bloat control technique is to revert the
child to its parent if a maximum tree depth is exceeded.

2.4.3 Modularity and Automatically Defined Function

An essential characteristic of the programs written by human programmers
is modularity [68]. In software engineering, modular programming is a tech-
nique that divides a program into independent blocks based on their func-
tionality. These independent blocks are called modules. A module contains
everything necessary to execute one of the functionalities.

For human programmers, writing programs with modules brings several
advantages. First, modules allow easy reuse of the same code fragments and
therefore shrink the solutions. Second, modules could reflect the structure of

25

def function(x):
return 5*(5*(5*(5*(5*(5*x+1)+1)+1)+1)+1)+1

(a) Python code without modules

def module1(x):
return 5*x+1

def module2(x, t):
for i in range(t):

x = module1(x)
return x

def function(x):
return module2(x, 6)

(b) Python code with modules

Figure 2.8: A comparison between code with/without using modules. Modules
can shrink the code (e.g., it is a lot of work to write module2(x, 100) without
modules). The code with modules is easier to understand and edit (e.g., we can
change module1 to x**2-1 easily).

the problem. If a problem could be decomposed into several sub-problems,
the modules could be the solution to these sub-problems. Third, using mod-
ules makes the code easier to understand and maintain.

Figure 2.8 provides examples of Python code implementing the same
functionality. However, the lower one (Figure 2.8b) uses modules while
the upper one (Figure 2.8a) does not use modules. With modules, we
decompose the problem into several components, and thus it is easier to
understand that the program repeats to perform the operations in module1
on the input six times. Additionally, we can change the code in module1
while we have to update several places to perform the equivalent change
without using modules. Finally, it seems that Figure 2.8b contains more
lines of code compared with Figure 2.8a. However, one should not be
misled by this simple case. Writing an equivalent program to module2(x,
100) without using modules would become an endless work (and that is why
we do not show this complex example here) while with modules we can just
adjust a parameter.

26

PROGRAM

ADF0 ADF1 MULT

ARG0
ARG1 ADD ARG0 MULT ARG0 ADF0

ARG0 ADF1

ARG0

Body Body

Function Function Result

ARG0 ARG1 ARG0 ARG0

Figure 2.9: A solution with Automatically Defined Functions. The root node con-
tains three branches. The two of them on the left are function-defining branches,
while the right one is the result-producing branch. The arguments in the function-
defining branches are local arguments. This solution represents the program
MULT(ARG0,ADD(ARG0,MULT(ARG0,ARG0))).

27

GP contains this great feature of modularity as well. In GP, a module is
a function consisting of primitives or previously defined modules [68]. The
Automatically Defined Function (ADF) [50] is a technique proposed for the
tree-based GP to implement the idea of modularization. Figure 2.9 presents
a solution to the tree-based GP with two ADFs. This solution contains two
function-defining branches (two left subtrees of the root node) and a result-
producing branch (right subtree of the root node). The function-defining
branch defines the modules with local arguments and the main body of the
function. The result-producing branch may call the functions defined by the
function-defining branches. The function-defining branch may also call the
previously defined functions or even itself, though this recursive call may
cause the infinite evaluation issue.

The word “automatically” in ADF implies that these functions are not
defined by users manually. Instead, GP evolves to discover these structures
during the search process, although the user is required to set a number of
functions in the solution. These ADFs are randomly initialized and mutated
during the evolution. However, the crossover operator is not allowed to break
these building blocks. In other words, the crossover operator can only swap
the function-defining branches between individuals rather than change the
internal structures.

According to Woodward’s review [68], ADF or modularity implements
a key idea of problem-solving, divide-and-conquer. That is, GP divides a
problem into smaller and easier sub-problems, solving them independently,
and then combining these sub-solutions into a solution to the original prob-
lem. In GP, each module is a solution to each of the sub-problems. With
modularity, we can simply refer to the solved sub-problems when it occurs
again.

The advantage of using modules in GP is similar to modular programming
for humans. It allows the easy reuse of the same code fragments, reflects the
structure of the problem, and makes the code easier to understand.

In spite of ADF [50], many studies have developed different techniques
to realize the modularity in various variants of GP, such as Module Acqui-
sition [69], Subtree Encapsulation [70], Automatically Defined Macros [71],
Hierarchy Locally Defined Modules [72], and Tag-based Modularity [73, 74].
It is necessary to point out that these techniques can only allow code reuse
inside a single run of the GP on one PS problem. The code reuse across
different PS problems is mentioned in the next subsection.

28

Represented
by

Decomposed
into

Problem 1

Sub-problem
1

Sub-problem
s

IO Case
1

IO Case
m

...

...

Problem t......

Figure 2.10: Multiple tasks in Genetic Programming at different scales. They
are problem level, IO-case level, and sub-problem level.

2.4.4 Multiple Tasks in Genetic Programming

The phrase “multiple tasks” in GP could have different meanings. Fig-
ure 2.10 shows the “multiple tasks” at three different scales in GP.

Problem level Multiple tasks could refer to the multiple PS problems
solved by GP, either in parallel or in a sequence. The first work on this
idea might be the External Concept Reuse by Seront [10]. Another similar
but more recent work is the Run Transferable Libraries (RTLs) [11]. RTLs
provide GP with a library of functions as primitives and evolve these func-
tions based on the feedback from GP algorithms, from run to run across a
set of related problems. Other studies have attempted to use GPs to solve
multiple related tasks sequentially with different algorithm designs in ini-
tialization [12, 13], mutation [12, 13], and primitives [14]. Multiple tasks
at the problem level in GP is similar to MTO [2] that has been reviewed
in Section 2.3. The multiple tasks to be solved are related to each other.
However, one difference between the two problem paradigms is that MTO
usually solves different tasks in parallel rather than in a sequence. There are
a few studies on Multi-Task GP [5, 6, 7, 8] where multiple tasks in MTO are

29

solved by GP algorithms in parallel.

IO-case level A PS problem is represented by a set of IO cases. Multiple
tasks could also refer to minimizing the difference based on multiple IO cases.
In GP algorithms, selection methods might be the corresponding component
to deal with multiple tasks at this IO-case level. In the conventional GP [50],
tournament selection is applied with the sum of errors on all IO cases as
the fitness evaluation. Lexicase Selection (LS) [19] is an alternative selection
method for GP which keeps the objectives or cases separate. LS [19] filters
the worst individuals in the population based on a shuffled list of objectives
and takes the rest individual as the selected parent. In Chapter 5, we
solve Seismic History Matching problems with LS. In a more general sense,
multiple tasks at the IO-case level can also refer to other objectives that
guide the evolution of one PS problem. For instance, several Multi-Objective
Genetic Programming (MOGPs) [75, 76, 77] take the individual complexity
as another objective to optimize other than minimizing the errors on the
IO cases. These MOGPs are designed to control the bloat during evolution.
Readers can find more information on this topic in Section 9 of the book
by Poli et al. [78].

Sub-problem level A problem could be divided into more than one sub-
problems. Solving these sub-problems together with modularity could be
considered as another version of multiple tasks in GP. It is notable that in
this sub-problem level, there are no specific fitness functions for each sub-
problems to guide the search. The evolution of these sub-problems is done
by the embedded representation of modules, such as ADF [50]. We have
reviewed the related topic on ADF and modularity in Section 2.4.3.

30

Chapter 3

Genetic Knowledge Transfer

In the last chapter, we have reviewed several optimization problems that aim
to solve multiple tasks together. In real life, Knowledge Transfer (KT) is an
essential idea for solving multiple tasks. KT allows humans to learn from
their experiences and improve themselves. In this dissertation, we focus on
an agent that is able to do similar things.

This chapter starts with KT in a general sense and introduces a definition
of Genetic Knowledge Transfer (GKT) which is the KT in the Evolutionary
Computation context in Section 3.1. Then, we go through several exam-
ples of GKT in the literature, including GKT in Multi-Objective Optimiza-
tion, GKT in Multi-Task Optimization, and GKT in Genetic Programming
in Section 3.2, Section 3.3, and Section 3.4, respectively.

3.1 Definition

Knowledge Transfer (KT) or transfer of knowledge is a useful problem-solving
technique when there are more than one tasks to solve and these tasks are
related to each other. One example is our Evolutionary Computation (EC)
algorithms. We apply our knowledge from the biological domain to solve
engineering optimization problems since the optimization process is similar
to an evolutionary process.

KT is useful in EC as well. In the real world, many problems are not
isolated. However, the conventional EC methods solve them without consid-
ering this fact. Most of EC techniques employ random initialization, random
variation, and semi-random selection based on fitness. However, when solv-
ing more than one task at the same time, KT techniques could leverage the
knowledge from a related problem to enhance the search performance. This

31

chapter provides several existing KT methods in the EC literature, but before
that, we give a definition of KT in EC.

In knowledge management studies, KT refers to “the process where one
unit is affected by the experience of another” [79]. The term KT is also widely
used in some topics of Machine Learning, such as Transfer Learning [80],
Multi-Task Learning [81], and Knowledge Distillation [82].

In the EC literature, Multi-Task Optimization (MTO) [2] is a sub-field
that often employs the idea of KT. Gupta et al. [83] have come up with a
definition of knowledge as follows.

The knowledge extracted a posteriori from an unknown optimiza-
tion task is identical to the prior knowledge required to sponta-
neously address the same task.

However, this definition of “knowledge” is far from practice. In fact, the
authors suggested in the same work [83] that the knowledge of the problem
is usually embedded in the elite solutions in the population of an Evolutionary
Algorithm (EA). Moreover, they did not provide a definition of “transfer”
which is another important concept in KT.

Therefore, we propose a definition of KT in the context of EC in Defi-
nition 1. To differentiate the KT in EC from KT in other fields, we call it
Genetic Knowledge Transfer (GKT). Our definition of GKT derives from the
definition of KT in knowledge management studies in the first paragraph of
this section [79].

Definition 1 Genetic Knowledge Transfer is the process where one EA is
affected by the dynamic of another.

Clearly, the entire dynamic (experience) of an EA is considered as genetic
knowledge. It includes all the individuals sampled during evolution and in-
teractions between them. We name it as raw knowledge. The term transfer
is the process or the act to affect an EA. The transfer process is usually done
by specifically designed operators. The affecting EA is source EA and the
affected EA is target EA.

Usually, using the entire dynamic of an EA (raw knowledge) is not effi-
cient, since the solutions in the first beginning generations hold worse fitness

32

values and seldom contain the building blocks of the problem. Instead, we can
select representatives from the entire dynamics, such as the best individual
and the final population. We name these selected representatives as repre-
sentative knowledge. Moreover, some prior studies use learned structures [84]
or high-level statistics [85] of the high-quality solutions as knowledge. We
call this type of knowledge processed knowledge.

Finally, GKT happens between two EAs. Therefore, methods that inject
building blocks created by humans are not in this category. For the sake of
convenience, we sometimes use descriptions such as “GKT between Task A
and Task B” instead of “GKT between EA that solves Task A and EA that
solves Task B”. Similarly, we use “source task” and “target task” in place of
“the task that is solved by source EA” and “the task that is solved by target
EA”, respectively.

In the following sections, we provide examples of GKT in different fields
of EC, including Multi-Objective Optimization (Section 3.2), MTO (Sec-
tion 3.3), and Genetic Programming (Section 3.4).

3.2 Examples in Multi-Objective Optimization

A very good example of GKT in Multi-Objective Optimization (MOO) hap-
pens in the Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [36]. We have reviewed MOEA/D in Section 2.2.3.

In MOEA/D [36], a MOO problem is decomposed into a set of single-
objective optimization tasks (sub-problems). These tasks are solved in par-
allel using a single population. In this population, every individual solution
serves as a solution to one sub-problem.

One may notice that there is only one individual for every sub-problem,
rather than a population. Interestingly, MOEA/D selects parents from neigh-
bor solutions (line 4 in Algorithm 2.2) to reproduce the child individual of
a sub-problem by crossover.

If we take off the crossover operator, the mutation step will work on the
single solution that is associated with the current sub-problem. In other
words, those single-objective optimization problems in MOEA/D are solved
by a single-solution metaheuristic; however, combined with a crossover op-
erator that performs GKT from a second metaheuristic that solves neighbor

33

GKT

x1

Crossoverx2

x3

x4

x5

x6

Mutationy y'Sub-problem 2

Sub-problem 4

Figure 3.1: An example of Genetic Knowledge Transfer in MOEA/D. To generate
the child individual of Sub-problem 2, the algorithm selects x2 and x4 to perform
crossover. This step could be considered as transferring genetic knowledge from
an EA that solves Sub-problem 4 to the current EA that solves Sub-problem 2.

34

GKT

x1

x2

x3

x4

x5

x6

Task 1

Task 2

yYprob.

Figure 3.2: An example of Genetic Knowledge Transfer in Multi-Task Optimiza-
tion. x1 to x3 are the solutions to Task 1 while x4 to x6 are the solutions to Task
2. Genetic Knowledge Transfer occurs when the algorithm crossovers x2 with x4

based on a probability.

sub-problem (Figure 3.1). Here, representative knowledge refers to the in-
dividual of a sub-problem in the current generation.

In spite of the above example, there are other techniques that could be
considered as GKT in the literature of MOO, such as transferring a set of
elite solutions from single-objective problems as representative knowledge to
a MOO problem [86] and applying learned structure as processed knowledge
to different sub-problems in MOEA/D [84].

3.3 Examples in Multi-Task Optimization

MTO [2] is naturally associated with the idea of GKT. MTO requires solving
multiple tasks simultaneously and exploiting the common knowledge among
these tasks. Therefore, almost all studies on MTO could be considered as
examples of GKT. The reader could refer to a survey by Wei et al. [4].

In Section 2.3.2, we have introduced Multi-Factorial Evolutionary Al-

35

gorithm (MFEA) [2]. In MFEA, GKT is performed when the crossover oper-
ator takes two parents that hold different skill factors. The skill factor shows
the best-performed task of a solution. Therefore, this crossover combines
the genetic materials from the solutions that are good solutions to different
tasks.

The Multi-Task Evolutionary Algorithms (MTEAs) with multi-population
methods maintain several sub-populations to solve multiple tasks. The GKT
in these algorithms is similar to what in MFEA [2]. The crossover opera-
tor takes two parents from different sub-populations (that are used to solve
different tasks) and reproduces child solutions. In both MFEA [2] and the
multi-population methods, this crossover is performed with a probability.
The representative knowledge here is the individual with high fitness.

Among all MTEAs, we highlight Adaptive Archive-based Many-Task
Evolutionary Algorithm (AAMTEA) [3]. In that work, many tasks are solved
in parallel and these tasks are not necessarily to be similar. Most MTEAs
transfer genetic knowledge between any pair of tasks. The authors have
suggested that this type of “aimless” transfer might result in the waste of
computational budget. To address this issue, they have come up with a novel
method to select source tasks and target tasks based on a similarity measure
between tasks and adaptive rewards from the evolutionary process.

3.4 Examples in Genetic Programming

In Section 2.4.4, we have mentioned the three levels of multiple tasks in
Genetic Programming (GP), namely sub-problem level, IO-case level, and
problem level.

GKT seldom occurs at the sub-problem level, since the crossover is not
allowed to change the structure of the modules such as Automatically Defined
Function (ADF) [50] during the reproduction period.

When looking at the IO-case level, it is hard to decouple the original
evolutionary process into several separate EAs, if we only consider those
methods that aggregate IO cases by simply taking the sum. However, there
are a few studies that could be considered as examples of GKT. Multi-
Objective Genetic Programming based on Decomposition [87, 88] is a variant
of MOEA/D [36] that incorporates the encoding, crossover, and mutation of
the GP algorithm. The GKT that happened in these methods is similar to

36

that happened in MOEA/D (Section 3.2). Lexicase Selection (LS) [19] is
another way to aggregate the IO cases in GP algorithms. The GKT in GP
with LS is discussed in Chapter 5.

Most examples of GKT in GP happen at the problem level. In other
words, the GKT occurs among several GPs that solve different Program
Synthesis (PS) problems. Some studies [5, 6, 7, 8, 9] have applied GP to
solve multiple PS problems as MTO [2]. The GKT in these works is the
same as the GKT that happens in MTO (Section 3.3).

Other than these works, several studies [10, 11, 12, 13, 14, 15, 16] have at-
tempted to solve different tasks in a sequence. These tasks are usually similar
and the number of the tasks is usually small. For example, Wick et al. [15]
have proposed a method that solves a sequence of PS problems starting from
simple problems and then harder ones. The final population of the just-
solved problem will be used as the initial population of the next PS problem.
Therefore, the genetic knowledge in that work is the final population. Other
studies have utilized primitive sets [10, 11], subprograms [12, 13, 14], and
best solutions during the whole run [16] as representative knowledge.

37

Chapter 4

Adaptive Transfer of Genetic Knowledge

Humans solve endless tasks in their whole lives. However, not all past tasks
are helpful for a specific task to solve. Generally speaking, the experiences
on similar tasks are usually more helpful than that on dissimilar ones. Trial
and error is another common way to figure out the helpful tasks when the
similarity of the tasks is not easy to compute.

This dissertation investigates an Evolutionary Algorithm that solves many
tasks like a human. In Chapter 3, we have learned about several Genetic
Knowledge Transfer (GKT) methods. However, most of them work on a few
similar tasks. In this chapter, we propose a system design that allows effi-
cient GKT among many tasks. Moreover, these tasks are not necessarily to
be similar.

Section 4.1 describes Naive Genetic Knowledge Transfer. Most of the
conventional GKT methods belong to this category. Section 4.2 provides
the details of the proposed design of our Adaptive Genetic Knowledge Trans-
fer System.

4.1 Naive Genetic Knowledge Transfer

Figure 4.1 shows an intuition of Naive Genetic Knowledge Transfer (NGKT).
The NGKT happens between two Evolutionary Algorithms (EAs) when some
of the individuals from the offspring population of the source EA are selected
and used as parents during the reproduction steps of the target EA.

Many prior studies that transfer the best individuals of current genera-
tion [4], final populations [15], and final solution [16] could be considered as
special cases of this NGKT. Some studies, such as the work byWick et al. [15],

38

reproduction

Parent

selection

Selected
Individuals

Offspring

reproduction

Parent

selection

Offspring

EA 1

EA 2

Task 1

Task 2

Figure 4.1: Naive Genetic Knowledge Transfer (NGKT). The NGKT happens
between two Evolutionary Algorithms (EAs). It selects individuals from the off-
spring population of the first EA and uses them as parents of the second EA to
reproduce child individuals.

39

Solver

User User User User

Task 1
Task 2

Task 4
Task 3

Time
1

Time
2

Time
3

Time
4

Figure 4.2: A cloud service solving multiple tasks in a sequence. These tasks are
from the same user; however, at different time steps.

have proposed to perform GKT among more than two tasks. These works
could be considered as a composite of several NGKT.

In addition, some researchers have proposed to transfer building blocks
(partial individual) [12, 13] or high-level statistics [16] instead of the indi-
viduals. These methods are not exactly the same as NGKT but could be
considered as NGKT with extraction methods (to extract building blocks or
high-level statistics).

4.2 Adaptive Genetic Knowledge Transfer System

4.2.1 Solving Many Tasks in a Sequence

Multi-Task Optimization (MTO) [2] considers an optimization solver (EA) on
the cloud service that could be accessed by multiple users at the same time.
Therefore, MTO aims to solve several optimization problems simultaneously
and exploit the common knowledge between tasks.

In this study, we assume a different scenario (Figure 4.2) where an EA

40

is run on the cloud service and a user consecutively poses a variety of tasks to
this EA for a long time. In other words, the EA is required to solve a sequence
of many problems (one at a time step) and use the knowledge gained from
past tasks to improve performance when solving the current task. Moreover,
these tasks are in a large number and are not necessarily to be similar. This
scenario is similar to the case where a human solves tasks consecutively and
improves himself/herself based on past problem-solving experiences.

This scenario is important and interesting for the following reasons. First,
similar to MTO [2], this sequential problem-solving exploits the common
knowledge between related tasks and therefore improves the performance as
well. Second, there are endless optimization tasks in the real world, and it is
then not possible to solve all of them by the means of MTO [2]. Therefore,
studying the methods that work in this sequential problem-solving scenario
definitely has its practical meaning. Third, the way that an agent solves
problems consecutively and improves itself is similar to how humans develop
intelligence.

4.2.2 System Design

In this section, we propose a system design that uses GKT to solve many
tasks in a sequence and improves itself during problem-solving. Compared
with NGKT, there are several issues to concern.

Many unrelated tasks Only a few tasks are related to the current task to
solve. Therefore, it is important to design a method to automatically figure
out helpful genetic knowledge. Assume an archive of genetic knowledge from
different tasks, there are two ways to find helpful genetic knowledge.

1. The first method filters the archive based on the similarity between
tasks. That is, only the genetic knowledge that is from similar tasks to
the current task will be transferred.

2. The second method employs the idea of trial and error. This method is
similar to the self-adaptation of parameters in an EA such as JADE [89].
The self-adaptation methods search for the proper parameters of an
EA in parallel with the main search in the solution space. The second
method starts using different pieces of genetic knowledge in the archive
with equal probability; however, the probability to use a piece of the

41

Feedback

EA

Task i

Extractor

Solution

Sub-
solutions

Filter
Archive

Selector

Filtered
Archive

UtilizerSub-solution

Sub-solutions from
Task 1 to Task i-1

Figure 4.3: Design of Adaptive Genetic Knowledge Transfer (AGKT) system.
The system consecutively solves tasks, extracts sub-solutions as genetic knowledge,
and uses the genetic knowledge in future tasks.

genetic knowledge is then updated according to the feedback from the
main EA solver.

3. The similarity-based method requires a way to compute the similarity
between tasks, while the self-adaptive method might not work well
when there is a large number of genetic knowledge.

Sub-tasks A task sometimes could be decomposed into several sub-tasks.
Even if the two tasks are similar, they still have different sub-tasks in spite of
common ones. Therefore, it is promising to have a technique that divides raw
knowledge into components. For example, the system could use sub-solutions
of the final solution of an EA as processed knowledge in the GKT.

Limited storage If the system is going to run for a long time, there will
be a limit on the storage capacity. That is, we cannot store all individuals
sampled during evolution for every run of EAs. Since we are focusing on a
sequence of problems, a simple idea is to use the final solution that the EA
generates for a task as the representative knowledge.

42

Our system design is provided in Figure 4.3. At the moment, the system
has solved i-1 tasks and is going to solve the i-th task. The system solves
Task i as follows.

1. The system generates a subset of the archive based on the similarity
between the current task (Task i) and the tasks associated with sub-
solutions. This subset is called a filtered archive.

2. The system selects sub-solutions based on the fitness feedback and uti-
lizes the selected sub-solution in the reproduction steps of the EA in a
similar sense to the self-adaptation.

3. The system generates the solution of Task i.

4. The system extracts sub-solutions from the solution of Task i and stores
them in the archive.

We call this method Adaptive Genetic Knowledge Transfer (AGKT) Sys-
tem. Our system design shares a similar idea to Adaptive Archive-based
Many-Task Evolutionary Algorithm (AAMTEA) [3]. However, there are at
least two differences. AAMTEA [3] focuses on the case where many tasks
are solved in parallel. Therefore, AAMTEA [3] keeps the historical individ-
uals of all tasks, while our method can only access the final solutions of the
past tasks. Moreover, our method considers sub-tasks by using sub-solutions
as genetic knowledge. AAMTEA [3] does not consider sub-tasks. The ge-
netic knowledge in that work [3] is a set of good individuals in the current
generation.

This proposed system is rather conceptual. However, we first develop the
general idea of this system of EA to solve a sequence of many tasks, extract
genetic knowledge and improve itself. Moreover, we point out some possible
designs of the important components. In the later chapters, we develop and
test initial versions of the key components that demonstrate the viability of
the system.

43

Chapter 5

Multi-Criteria Seismic History Matching

Seismic History Matching (SHM) is a key problem in the Geoscience com-
munity, requiring optimal parameters of a subsurface model that match the
observed data from multiple in-situ measurements. Therefore, the SHM
problems are usually solved with Multi-Objective Evolutionary Algorithms
(MOEAs). This group of algorithms optimizes multiple objectives simultane-
ously, considering the trade-off between objectives. However, SHM requires
solutions that are good on all objectives, rather than a trade-off.

In this case study, we propose a Differential Evolution algorithm using
Lexicase Selection to solve the SHM problems. Unlike the MOEAs, this
selection method pushes the solutions to perform well on all objectives. We
explain how this selection method performs GKT. We compare this method
with two MOEAs, namely Non-dominated Sorting Genetic Algorithm II and
Reference Vector-guided Evolutionary Algorithm, on two SHM problems.
The results show that this method generates more solutions near the ground
truth.

5.1 Introduction of the Case Study

Optimization problems for subsurface flow processes, are a key problem in
the Geoscience community, especially the Seismic History Matching (SHM)
problem, which we will use here as a case study. It is about the matching
of model parameters with data obtained from in-situ measurements. The
objective of SHM is to find a model or small set of models which best match
the in-situ measurements. This calibration process improves the prediction
accuracy of the starting models and is a necessity for safe and economically
sound development of subsurface energy systems (energy storage, geothermal,
Oil and Gas). A small and accurate set of final models is needed because the

44

simulation of reservoir fluid flow is computationally expensive.

The SHM data assimilation problem is well-known as being a highly dif-
ficult inverse problem to solve [90, 17, 91, 92, 93, 94, 95]. The typical data to
assimilate in a history matching exercise are wells and seismic data, which are
usually represented as time-series and matrices, respectively. How to merge
these two rather different attributes in a single objective function is a non-
trivial problem [96]. One “classical” approach is to calculate the mismatch of
wells and seismic maps and then compose a weighted single objective func-
tion. These weights are generally chosen by engineering judgement, conse-
quently it is then questionable to sum directly these two objectives together,
as they represent different entities and physical measurements.

To circumvent these problems, several authors have employed Multi-
Objective Evolutionary Algorithms (MOEAs) [97, 98, 99, 100, 101, 102, 103,
104, 105, 106, 107], and Many-Objective Evolutionary Algorithms [108]. Typ-
ically, these algorithms work simultaneously on several conflicting objectives
(i.e. the optimality on each objective cannot be achieved at the same time),
looking for the best trade-off set of solutions, which is called the Pareto
Front (PF) [20]. Therefore, selection methods that consider the trade-offs
of multiple objectives at the same time are usually introduced in this group
of algorithms. For example, the Reference Vector-guided Evolutionary Al-
gorithm (RVEA) [21] uses a reference vector-guided selection based on the
linear combinations of the objectives. Non-dominated Sorting Genetic Algo-
rithm II (NSGA-II) [20] uses the fast non-dominated sorting that consider a
partial order based on all objectives.

However, this trade-off approach is precisely what we propose to inves-
tigate in this paper. We postulate that a “trade-off of objectives” is not a
good mental model to describe SHM problems, and therefore MOEAs are
not well adapted for these problems. This is because in SHM, the different
objectives are not strictly trade-offs, but rather different descriptions of a
same physics. Eventual differences in objective values are explained by the
sparseness and uncertainty of the available data, and not because of some
inherent incompatibility of the two objectives (compare this with the more
traditional financial portfolio optimization problem, where return and risk
of an investment are objectives that are normally at odds with each other).
Ideally, we are interested in solutions that show high performance in all ob-
jective measures, and a solution that is very good in one objective and very
bad in others is likely unphysical.

45

Other problem formulations in the Evolutionary Computation (EC) lit-
erature are close to this “non trade-off” model, such as Multi-Task Opti-
mization (MTO) [2] and Multi-Form Optimization. The readers may refer
to Gupta’s review work [24] for the general background. In particular, we
highlight Program Synthesis (PS), where the goal is to optimize a computer
program that can solve a generalized logical task. Each instance of the task
is considered a separate objective, and an optimal program must solve as
many of these instances as possible [19].

We consider the SHM problem to be more similar to this formulation,
in the sense of objective aggregation, so we propose a method for aggregat-
ing multiple objectives for the SHM problem based on Lexicase Selection
(LS) [19]. LS is a method originally proposed for PS tasks. The primary
concept, is to filter the solutions based on a shuffled arrangement of all ob-
jectives, so that it can drive the solutions to a better quality in all objectives
at the same time, while providing enough diversity during the search pro-
cess. We provide a detailed background of this method in Section 5.3. We
further provide an explanation on how this LS performs Genetic Knowledge
Transfer (GKT). We introduce a new Differential Evolution algorithm using
LS for the SHM problem, which is described in Section 5.4.

We tested our proposed algorithm on two SHM problems, referred in the
following as: TS2N and Volve. TS2N [109] is a simple model containing
a single injection and production well pair. This model contains very low
trade-offs between the objectives, but it will serve as a calibration for the
new implemented method. The Volve model [110], on the other hand, is a
real-world case, and significantly more difficult to optimize, with multiple
well and seismic objectives.

We compared the proposed algorithm with two well-knownMOEAs, NSGA-
II [20] and RVEA [21]. We discuss the results from various perspectives,
including the distance to the ground truth, the difference on set coverage,
the distribution of the non-dominated solutions, as well as the prediction
performance. Our experiment shows that this method has the following
characteristics:

1. A better optimization performance can be achieved for the SHM prob-
lem (Table 5.3 to Table 5.6 in Section 5.5.3).

2. The final solution set is concentrated in the center of the PF, with fewer
extreme solutions which would possibly be non-physical (Figure 5.4

46

in Section 5.5.3).

3. Weighting or merging of independent objectives is not required, greatly
simplifying the data assimilation processes (Algorithm 5.2 in Sec-
tion 5.4).

5.2 Seismic History Matching

5.2.1 Problem Description

Subsurface flow data assimilation problems [111, 112] and more precisely,
SHM [90, 17, 91, 92, 93, 94, 95], developed in this paper, are very challeng-
ing to solve and very active area of research in the Geosciences community,
which consists on merging predictions with observations. We aim in match-
ing a multi-stream of data: map-based and “point scale” based (respectively,
time-lapse seismic and multiple well data), to the reciprocal maps issued by
the simulation model. The ultimate goal being to have at disposal a robust
and reliable model update, able to inform on field connectivity [113, 114], ge-
ological features identification [115] or support to decision-making [116], for
instance. The complexity lies in the fact that seismic contains uncertainty,
such as structural errors and noise, which are very difficult to estimate. For
this very reason it is hard to find wells and seismic data in agreement, there-
fore a multi-objective function approach is sound.

5.2.2 Multi-Objective Evolutionary Algorithms in
Seismic History Matching Literature

In this section, we first provide background of MOEAs and their application
in the seismic history matching literature. After that, we point out the limi-
tations of the MOEAs and introduce a different approach, Lexicase Selection,
to handle with the multiple objectives in the SHM problems.

There are two classical MOEAs that have been frequently cited in SHM
literature, and illustrate two different approaches to find a PF: NSGA-II [20]
uses a domination approach, while RVEA [21] uses a decomposition approach.

47

NSGA-II NSGA-II [20] is a traditional genetic algorithm where the selec-
tion operator, which selects the solutions to keep for subsequent iterations, is
modified to take into account the notion of Pareto-optimality. This selection
method contains two components, fast non-dominated sorting and crowding
distance assignment. Fast non-dominated sorting assigns a rank to each so-
lution depending on their dominance relationship to the rest of the solution
set. The tie-breaker for solutions with the same rank is the crowding dis-
tance, which makes similar solutions in the objective space less likely to be
selected.

Other than the selection method, NSGA-II [20] uses elitism strategy, and
generates new solutions by simulated binary crossover and polynomial mu-
tation.

RVEA RVEA [21] is a decomposition-based MOEA proposed for Many-
Objective Optimization Problems (MaOPs). MaOPs contain more than four
objectives. In these high dimensionality situations, domination-based selec-
tion does not provide enough selection pressure for the optimization process.
To address this issue, RVEA [21] uses a novel selection method called refer-
ence vector-guided selection. It contains four steps: objective value transi-
tion, population partition, angle penalized distance (ADP) calculation, and
the elitism selection. The objective value transition scales the objective val-
ues so that the length of the objective vectors is between 0 and 1. The
next step, population partition, divides the whole population into several
sub-populations based on the cosine similarity between the objective vectors
of the individual and the unit reference vectors. After that, ADP of the
individuals will be computed as the objective vector length with a penalty
related to the angle between the objective vector and the reference vector.
The algorithm selects the elites of each sub-population based on ADP.

The remainder of RVEA [21] contains random parent selection, simulated
binary crossover and polynomial mutation, as well as an additional step to
automatically adjust the reference vectors by generations.

The early studies in the SHM literature aggregated the objectives by
weighted sum and solved with Single-Objective Evolutionary Algorithms
such as Particle Swarm Optimization (PSO) [117, 118]. However, many re-
cent studies started to solve the SHM problems using MOEAs.

Schulze applied Strength Pareto Evolutionary Algorithm (SPEA) to solve

48

the SHM problem [97], while Min and Negash modified and applied Multi-
Objective GA (MOGA) in three separate works [119, 120, 121]. NSGA-II
is the most frequently used algorithm in the SHM literature [122, 103, 105,
104, 106, 107]. Mohamed [99] and Christie [100] did the similar comparison
studies between Multi-Objective PSO (MOPSO) and Single-Objective PSO
(SOPSO) in two separate works. Hutahaean applied MOPSO in his two stud-
ies [101, 102]. Ilamah applied MOEA/DD [123]. Hutahean applied RVEA to
solve Many-Objective SHM problems (4-objectives and 6-objectives) [108].

Based on our review, subsurface researchers have applied various MOEAs
to solve the SHM problems, including domination-based approaches such as
SPEA [97], SPEA2 [98], MOPSO [99, 100, 101, 102], and NSGA-II [103, 104,
105, 106, 107], as well as decomposition approaches such as RVEA [108] and
MOEA/DD [123]. Most of these studies have indicated that the MOEAs
can achieve better results on the SHM problems, compared to using single-
objective EAs.

However, we suggest that there are at least three limitations of using
MOEAs to solve the SHM problems.

1. MOO assumes that the objectives are strict trade-offs in competition
with each other. We think, that for SHM problems the trade-off be-
tween competing objectives can be considered weak and that many
objectives are either localized (do not impact each other) or are com-
plimentary, where an improving fitness in one objective is usually com-
plimentary of other objectives. This notion also fits with the overall de-
sire to find models which best fit all objectives in SHM. The complexity
and variability of SHM leads to a unique level of objective competition
for each model, making generalization of this rule difficult.

2. Following from 1, it is usually not necessary (or desirable) to achieve
the entire Pareto Front in SHM problems. Reservoir engineers are nor-
mally not interested in extreme points that hold high misfit on several
objectives but low misfit on the rest, as such points usually represent
unphysical solutions (data unbalanced solutions).

3. Some components of the MOEAs, such as the crowding distance as-
signment in NSGA-II [20], aggregate different objective values by the
simple addition. This is a questionable practice when different objec-
tives correspond to different physical entities, and requires arbitrary
tuning of the scaling factors for these objectives.

49

In the next section, we introduce LS [19] that handles the multiple objec-
tives differently from MOEAs. We argue that LS is able to overcome these
limitations.

5.3 Lexicase Selection

Algorithm 5.1: Pseudocode of Automatic ϵ-Lexicase Selection

input : list of objective functions F and population X
output: selected individual xlex

1 Fr ← shuffle(F);
2 A← X;
3 repeat
4 f ← pop(Fr);
5 for xj in A do
6 if f(xj) > fmin + σ then
7 A← A \ {xj};

8 until |F | = 0 or |A| = 1;
9 xlex ← random-select(A);

10 return xlex;

LS is first proposed for Genetic Programming (GP) to solve PS prob-
lems [19]. In a PS problem [19], the goal is to find a computer program
that passes a set of example input and output. Therefore, in the PS prob-
lem [19], solutions are expected to have good performance on all objectives.
This shows a difference from MOO, where solutions are allowed to perform
sub-optimally on some objectives (i.e., extreme points). We think the SHM
problems are more similar to the PS tasks rather than MOO, since a solution
performing well in one objective should not, in principle, always cause it to
perform worse in another.

The basic idea of LS [19] is to filter the population based on each of the
objectives in a random order. Each time before the algorithm selects an
individual, the order of the objectives will be shuffled. Then the algorithm
keeps the best individuals based on the objectives in the previous shuffled
order, until there is only one individual left or all the objectives have been
used (in this case, the algorithm returns a random individual from the rest
individuals).

One disadvantage of this selection scheme is that it can lead to a poor

50

performance on problems with a continuous fitness space, since few individ-
uals share the same elitism unless they are exactly identical. Therefore, in
this case, only one objective will be used to select a parent in the continuous
fitness space.

To solve this problem, Cava et al. have proposed the Automatic ϵ-
LS [124]. Automatic ϵ-LS [124] differs from the basic LS [19] by introducing
an adaptive threshold parameter σ to solve the previous issue. For a mini-
mization problem, the individuals whose fitness value is less than fmin+σ are
considered as the “best” individuals. fmin is the minimum objective value in
the population. σ is calculated based on median absolute deviation (MAD)
in (5.1), where median(·) takes the median of a set. A detailed procedure of
this method is provided in Algorithm 5.1.

σ = median
{
|median{f(xk)}|A|

k=1 − f(xi)|
}|A|

i=1
(5.1)

In the Automatic ϵ-LS [124], each parent is elite on at least the first ob-
jective used to select it. Since each parent is selected by a random order of
the objectives, the individuals are pressured to perform well on various com-
binations of the objectives, which enhances the diversity of the population.
However, the disadvantage of this method is also obvious. When the number
of objectives is small, there are not enough combinations of objectives to
provide the diversity. Thus, the algorithm can become greedy. But since the
available computational budget in the SHM problems is usually limited, we
believe this greedy characteristic does little harm for this application case.

5.3.1 Genetic Knowledge Transfer in Lexicase
Selection

In this section, we explain how GKT happens in LS. In Section 4.1, we
provide a definition of Naive GKT (NGKT) where a part of individuals of
an EA are selected as parents to reproduce the offspring of another EA.

Figure 5.1 shows the process of an EA using LS to solve two tasks (Task
1 and Task 2). This figure is divided in two parts showing the different views
of the same process.

LS selects parents based on a shuffled list of objective functions. In this
case, there are totally two possible orders (Order 1 and Order 2). Order

51

reproduction

Parents

selection
(Order 1)

selection
(Order 2)

Offspring

reproduction

Parents

reproduction

Parents

selection
(Order 1)

selection
(Order 2)

Offspring

reproduction

Parents

EA 1 for Task 1

EA 2 for Task 2genetic knowledge from
EA 2

genetic knowledge from
EA 1

Figure 5.1: Genetic Knowledge Transfer (GKT) in Lexicase Selection (LS). The
figure shows an example of LS with two tasks. On the left, the first Evolutionary
Algorithm (EA 1) evolves population based on Task 1 and meanwhile LS transfers
genetic knowledge from EA 2 that solves Task 2. On the right, EA 2 evolves based
on Task 2 while LS transfers genetic knowledge from EA 1.

52

1 keeps the better individuals of Task 1 at first and then keeps the better
individuals of Task 2 among the rest individuals. Similarly, Order 2 keeps the
better individuals of Task 2 and then keeps the better individuals of Task 1
in the rest individuals. Therefore, Order 1 selects better individuals of Task
1 while Order 2 selects better individuals of Task 2.

On one hand, the components inside the dashed box in the left part
could be considered as EA 1 that solves Task 1. On the other hand, the
components inside the dashed box in the right part could be considered as
EA 2 that solves Task 2.

Moreover, the components out of the dashed box in the left part are then
transferring the genetic knowledge from EA 2 (good individuals of Task 2)
to EA 1. Similarly, the components out of the dashed box in the right part
are transferring the genetic knowledge from EA 1 (good individuals of Task
1) to EA 2.

Therefore, LS solves all tasks with only one population and implicitly
performs GKT among tasks. When the tasks are similar, this implicit GKT
could enhance the performance of LS.

5.4 Differential Evolution based on Lexicase Selection

In this study, we propose a novel method to solve the SHM problems based on
the Differential Evolution (DE) [27] and the Automatic ϵ-LS [124]. DE [27]
is a simple yet powerful optimization algorithm, especially on continuous
domain. Its superiority has been proven in many prior studies [95, 125, 126].

In most MOEAs, there are some components doing arithmetic operations
on the objective values of the different objective functions. For example,
the crowding distance in NSGA-II [20] is computed as a Manhattan distance
that adds objective values of different objective functions directly. This step
is influenced by the different scales of the objective functions. Therefore,
a proper weight assigning step is necessary. This step is not trivial and
usually based on an engineering judgement. However, by using Automatic ϵ-
LS [124], there is no need to do arithmetic operations on the objective values
of the different objective functions. Therefore, this selection method is not
influenced by the different scales of the objectives and there is no need to do
weighting.

53

Algorithm 5.2: Pseudocode of Differential Evolution based on Auto-
matic ϵ-Lexicase Selection

input : population size N
output: Final population X

1 X ← initialize(N);
2 repeat
3 X ′ ← ∅;
4 for i in 1 . . . N do
5 xlex ← automatic-epsilon-lexicase-select(X);
6 x1,x2 ← random-select(X);
7 y← differential-mutate-crossover(xlex,x1,x2);
8 y′ ← polynomial-mutate(y);
9 X ′ ← X ′ ∪ {y′};

10 X ← X ′;

11 until termination criteria are satisfied;
12 return Xs;

While there are multiple proposed DE variants, one of the most frequently
used versions is DE/rand/1/bin [27]. In this method, three parents x1, x2,
and x3 are selected randomly to generate an offspring individual y based
on (5.2). In (5.2), the subscript j means the j-th dimension of a vector. α is
a scaling factor to control the mutation strength, and CR controls the binary
crossover rate. jr2 is a randomly selected dimension that ensures at least one
dimension in the solution is mutated.

yj =

{
x1,j + α · (x2,j − x3,j), r1 ≤ CR or j = jr2
x1,j, otherwise

(5.2)

In this study, we propose DE/lexicase/1/bin in Algorithm 5.2. This
method is similar to DE/rand/1/bin [27], however, we replace the first parent
with a “good” individual xlex selected by Automatic ϵ-LS [124]. This method
performs mutation on the selected individual, by adding a differential vector
between two random individuals.

We further modify the original DE algorithm [27] as follows. We omit
the survival selection in the original DE procedure, since the LS can provide
sufficient selection pressure. We also introduce the polynomial mutation after
the differential mutation to prevent premature convergence. We provide the

54

procedure of our proposed method in Algorithm 5.2.

yj =

{
xlex,j + α · (x1,j − x2,j), r1 ≤ CR or j = jr2
xlex,j, otherwise

(5.3)

As pointed out in Section 5.3, when the number of the objectives in the
problem is small, LS can become greedy. However, for a SHM problem, the
available number of iterations is usually small, since it costs several minutes
to hours per evaluation. Therefore, the greedy performance may not harm
the optimization results in the SHM problems.

In the remaining sections, we abbreviate our method to Lex-DE.

5.5 Experiments

To test the proposed Lex-DE algorithm, we prepared two SHM problems,
TS2N [109] and Volve [110]. The optimal parameters, also known as ground
truth, for both problems are known for us (of course not used by the algo-
rithms). The datasets generated and analysed during the current study are
available in a public repository 1.

5.5.1 Test Problems

SHM models based on real world datasets, while unique, are broadly similar
in their objectives and the challenges they present for optimization. We have
selected two test problems which cover different model scales and complexi-
ties. Additionally the models are open and available for additional research.

The TS2N model [109] simulates a reservoir located in the Gulf of Mex-
ico with a single production well. The model includes monthly production
data for Oil, Gas and Water volumes from 1996 to 1999. Within the model,
there are five geological layers with uniform properties. It is a real life exam-
ple, albeit a simple one. It includes five objectives, namely FWPR, FOPR,
FWPT, FOPT, and FGPR. The detail of the five objectives is provided
in Table 5.1. The production totals (PT) metrics are time integrals of the
production rates (PR). Including them as an objective emphasizes the re-
quirement for the model to match the actual produced volumes of the field,

1https://github.com/Y1fanHE/lexde-subsurface-model

55

Table 5.1: Details of the Objectives in the TS2N problem

Objective Details

FWPR Field Water Production Rate
FOPR Field Oil Production Rate

FWPT Field Water Production Total
∫ t

0
FWPR(t)dt

FOPT Field Oil Production Total
∫ t

0
FOPR(t)dt

FGPR Field Gas Production Rate

Table 5.2: Details of the Objectives in the Volve problem

Objective Details

Seis-mean Seismic metric using Mean Attribute
Seis-spa Seismic metric using SPA Attribute
P-F-14 Composite well F-14 fitness metric
P-F-12 Composite well F-12 fitness metric
P-F-15C Composite well F-15C fitness metric

rather than just the production rates. This is a key requirement in history
matching. Production totals tend towards increasing error overtime, which
places more weight on matching the total produced volume at the end of the
optimization period.

The TS2N model [109] has 13 model parameters that include horizontal
and vertical permeability multipliers for each layer, the oil-water contact
depth, porosity and the reservoir compressibility.

To increase the uncertainty of the TS2N model [109], we added random-
ized noise to the production rate history and reintegrated the rates to create
production totals which are slightly different to the truth case. The noise is
not correlated between objectives, and this creates a small degree of trade-off
in the objective function that would otherwise be absent.

The Volve field is an open dataset [110]. This problem also includes five
objectives, namely Seis-mean, Seis-spa, P-F-14, P-F-12, and P-F-15C. The
detail of the five objectives are provided in Table 5.2. The Volve model [110]
has 63 model parameters to generate a large search space. The parameters of
the model include the oil-water contact, fault transmissibilities, region and
zone permeability and porosity multipliers and aquifer volume. Unlike the

56

TS2N problem, this problem includes data from multiple wells and multiple
seismic.

5.5.2 Experimental Methods

We compared Lex-DE with two MOEAs, namely RVEA [21] and NSGA-
II [20]. Before the formal experiments, we tuned several important param-
eters but set the rest based upon experience in prior studies [20, 21] except
for population size. For each algorithm, we run five repetitions.

We set the total number of evaluations as 1500 for all three algorithms on
TS2N, and 2000 on Volve. The population size is set as 20 (75 generations
on TS2N and 100 generations on Volve). For Lex-DE, we set the scaling
vector α=0.5 and the crossover rate CR=0.5 without tuning. The mutation
rate pm is set to 1/n (n is the dimension of the problem). For NSGA-II,
the crossover rate pc is set to 0.9 (tuned from {0.6, 0.7, 0.8, 0.9, 1.0}). The
mutation rate pm is set to 1/n (n is the dimension of the problem). For
RVEA, the crossover rate and mutation rate are the same as NSGA-II. We
generate 15 weight vectors based on Das-Dennis method [37]. We set the
rest parameters, α=2.0 and fr=0.1, based on the original RVEA paper [21].

We include two numerical metrics of performance, average distance to
the ground truth and the difference on set coverage. Before computing the
metrics, we scaled the objective values into [0, 1] based on the non-dominated
solutions over all evaluations in the five repetitions of the three algorithms.

• Average distance to the ground truth (d̄gt). This metric shows
the scaled Euclidean distance between the non-dominated solution set
A and the ground truth x∗ in the parameter space.

d̄gt =
Σx∈A||x− x∗||

|A|
(5.4)

• Difference on set coverage (∆C(A,B)). Let A and B be two non-
dominated sets, the set coverage C(A,B) is defined as the percentage
of the solutions in B that are dominated by at least one solution in A.
When computing this set coverage, the non-dominated solution set of
every method is the non-dominated set of union of the solutions from
five repetitions. The difference on set coverage is computed as in (5.5).

57

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Objective

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Sc
al

ed
 V

al
ue Lex-DE

NSGA-II
RVEA

Figure 5.2: Parallel Objective plots for the best run on TS2N. Each line corre-
sponds to the five (scaled) objective values of a non-dominated solution.

A positive value of ∆C(A,B) shows that A is better than B considering
all the objectives.

∆C(A,B) = C(A,B)− C(B,A) (5.5)

C(A,B) =
|{u ∈ B|∃v ∈ A : v ≺ u}|

|B|
(5.6)

5.5.3 Experimental Results

Table 5.3 and Table 5.5 provide the average distance to the ground truth
d̄gt on the TS2N and Volve problems. On both problems, the solution set
found by Lex-DE is closest on average to the ground truth. Table 5.4
and Table 5.6 shows the difference on set coverage on the two problems.
On both problems, ∆C(Lex-DE,RVEA) and ∆C(Lex-DE,NSGA-II) are pos-
itive, indicating that a high proportion of solutions by Lex-DE dominates
the solution sets of both RVEA and NSGA-II.

58

Table 5.3: Average distance to the ground truth d̄g.t. of three algorithms on TS2N

Method Best Median Worst Mean Std.

Lex-DE 0.157 0.339 0.623 0.352 0.170
RVEA 0.684 0.719 0.953 0.793 0.123
NSGA-II 0.256 0.319 0.498 0.359 0.099

Table 5.4: Difference on set coverage ∆C(A,B) of three algorithms on TS2N

A B ∆C(A,B)

Lex-DE RVEA 100%
Lex-DE NSGA-II 100%
RVEA NSGA-II -100%

Table 5.5: Average distance to the ground truth d̄gt of three algorithms on Volve

Method Best Median Worst Mean Std.

Lex-DE 2.102 2.368 3.076 2.464 0.376
RVEA 2.947 3.127 3.222 3.086 0.110
NSGA-II 2.383 2.764 2.840 2.675 0.187

Table 5.6: Difference on set coverage ∆C(A,B) of three algorithms on Volve

A B ∆C(A,B)

Lex-DE RVEA 100%
Lex-DE NSGA-II 95%
RVEA NSGA-II -98%

59

0.00

0.25

0.50

0.75

1.00

Sc
al

ed
 V

al
ue

Lex-DE

0.00

0.25

0.50

0.75

1.00

Sc
al

ed
 V

al
ue

NSGA-II

Seis-mean Seis-spa P-F-14 P-F-12 P-F-15C
Objective

0.00

0.25

0.50

0.75

1.00

Sc
al

ed
 V

al
ue

RVEA

Figure 5.3: Parallel objective plot of non-dominated solutions in the best run
on Volve. Each line corresponds to the five (scaled) objective values of a non-
dominated solution. The solutions generated by Lex-DE hold smaller objective val-
ues and are more concentrated, compared with the solutions generated by NSGA-II
and RVEA.

60

0.0

0.5

1.0

Se
is-

sp
a

0.0

0.2

0.4

P-
F-

14

0.0

0.5

P-
F-

12

0.0 0.5
Seis-mean

0.0

0.1

0.2

P-
F-

15
C

0 1
Seis-spa

0.0 0.5
P-F-14

0.0 0.5
P-F-12

Lex-DE
NSGA-II
RVEA

Figure 5.4: Scatter plot of the objective values of non-dominated solutions in
the best run on Volve. The solutions generated by Lex-DE hold smaller objec-
tive values and are more concentrated, compared with the solutions generated by
NSGA-II and RVEA.

61

0 10 20 30 40 50 60 70
Generation

10 1

FW
PR

Lex-DE
NSGA-II
RVEA

Figure 5.5: FWPR by generations (y-axis in log scale) on TS2N

0 10 20 30 40 50 60 70
Generation

10 1

FO
PR

Lex-DE
NSGA-II
RVEA

Figure 5.6: FOPR by generations (y-axis in log scale) on TS2N

62

0 10 20 30 40 50 60 70
Generation

10 1

FW
PT

Lex-DE
NSGA-II
RVEA

Figure 5.7: FWPT by generations (y-axis in log scale) on TS2N

0 10 20 30 40 50 60 70
Generation

10 1

FO
PT

Lex-DE
NSGA-II
RVEA

Figure 5.8: FOPT by generations (y-axis in log scale) on TS2N

63

0 10 20 30 40 50 60 70
Generation

10 1

FG
PR

Lex-DE
NSGA-II
RVEA

Figure 5.9: FGPR by generations (y-axis in log scale) on TS2N

0 20 40 60 80 100
Generation

10 3

Se
is-

m
ea

n

Lex-DE
NSGA-II
RVEA

Figure 5.10: Seis-mean by generations (y-axis in log scale) on Volve

64

0 20 40 60 80 100
Generation

10 4

10 3

Se
is-

sp
a

Lex-DE
NSGA-II
RVEA

Figure 5.11: Seis-spa by generations (y-axis in log scale) on Volve

0 20 40 60 80 100
Generation

10 5

10 4

P-
F-

12

Lex-DE
NSGA-II
RVEA

Figure 5.12: P-F-12 by generations (y-axis in log scale) on Volve

65

0 20 40 60 80 100
Generation

10 6

10 5

10 4

P-
F-

14

Lex-DE
NSGA-II
RVEA

Figure 5.13: P-F-14 by generations (y-axis in log scale) on Volve

0 20 40 60 80 100
Generation

10 5

10 4

P-
F-

15
C

Lex-DE
NSGA-II
RVEA

Figure 5.14: P-F-15C by generations (y-axis in log scale) on Volve

66

Figure 5.5 to Figure 5.9 and Figure 5.10 to Figure 5.14 show the
change in the best objective values by generation on the TS2N and Volve
problem, indicating the convergence of the algorithms on these problems.
The objective values are scaled into [0, 1] based on all the solutions found
in five repetition of three algorithms. These figure shows that Lex-DE and
NSGA-II approaches the best solutions faster than RVEA in TS2N, and that
on Volve Lex-DE finds better solutions faster on seis-mean, seis-spa and P-
F-14, while NSGA-II finds better solutions faster on P-F-15C.

Figure 5.2 and Figure 5.3 provide the parallel coordinate graph of
the TS2N and Volve problems, respectively. These figures show the non-
dominated solutions over all evaluations in the run with best average distance
to the ground truth. In the graph, a non-dominated solution is represented
by five points connected by a line. The five points show the five objective
values (scaled into [0, 1]) of this solution. We find that on the TS2N problem
(Figure 5.2), there is only one non-dominated solution for each algorithm.
This shows the lack of trade-off between the objectives in TS2N.

On TS2N, the non-dominated solution of Lex-DE is slightly better than
that of NSGA-II, but much better than that of RVEA. On the Volve prob-
lem, more than one non-dominated solutions have been found for all three
methods. The parallel objectives plot in Figure 5.3 shows that Lex-DE
generates solutions with clearly better values than the other methods for the
objectives Seis-mean and Seis-spa, and somewhat better values on P-F-14,
P-F-12, and P-F-15. This shows that the proposed method finds solutions
that are generally good across all objectives, including objectives of different
nature (seismic and well) when compared to the other two MOEAs.

To better understand these results, Figure 5.4 provides a scatter plot
of the solutions in Figure 5.3. This figure shows how the non-dominated
solutions of the Lex-DE algorithm are distributed in a central area in the
non-dominated front. However, for the other two MOEAs (especially the
NSGA-II), their solution sets are spread over a larger area, including some
“extreme points” that perform sub-optimally on some objectives.

5.6 Discussion

In Section 5.5.3, we find that the performance of Lex-DE and NSGA-II on
the simple TS2N problem are close. However, on the harder Volve problem,
Lex-DE has a better result compared to NSGA-II and RVEA. In this section,

67

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
Distance to the Ground Truth

0

50

100

150

200

250

300

350

Fr
eq

ue
nc

y

Lex-DE
NSGA-II
RVEA

Figure 5.15: Frequency of scaled Euclidean distance between non-dominated
solutions to the ground truth in the parameter space. Lex-DE holds more solutions
that are close to the ground truth in terms of the decision space. However, there
is one run of Lex-DE might get into local optima.

we provide further discussion based on the Volve results.

5.6.1 Distribution of distance to the ground truth

Lex-DE uses the LS. Therefore, the solutions are pressured to perform well
on all objectives. This feature brings two main benefits.

1. For the final solution set, LS centralizes the solutions in a small area.
To illustrate this point, in Figure 5.15, we show the histogram of the
scaled distance between every non-dominated solution and the ground
truth in the parameter space in all repetitions. We clearly find that
Lex-DE generates more solutions than the other two MOEAs in the
area that is close to the ground truth (distance less than 2.2). In real-
world engineering tasks, the final set of models when using Lex-DE as
an optimization tool is closer to the truth and contains less nonphysical

68

Table 5.7: Difference on set coverage ∆C(A,B) in prediction of three algorithms
on Volve

A B ∆C(A,B)

Lex-DE RVEA -45%
Lex-DE NSGA-II -28%
RVEA NSGA-II -23%

results.

2. For the evolutionary process itself, a centralized solution set usually
holds a stronger exploitation, and thus the algorithm can converge to
a better result in a shorter amount of time. This is advantageous for
SHM problems where evaluations a usually limited due to computation
cost.

However, the disadvantages are also obvious. Focusing on a specific area
may lead to many solutions within a local optimum. For example, in Fig-
ure 5.15, there are solutions of Lex-DE distributed between 3.0 and 3.2.
We suspect this run falls within a local optimum, and thus results are worse
than other runs.

5.6.2 Performance in the prediction period

In the real world, the subsurface model is used to do forecasting on the
field production. We perform prediction based on every individual generated
during the optimization (2000 individuals per run). We only compute the
misfit on P-F-12 and P-F-14, since the other three objectives are not available
in the prediction period. The difference on set coverage based on the fitness in
prediction is provided in Table 5.7. Regarding the set coverage in prediction
and the evolution of the prediction fitness (Figure 5.16 and Figure 5.17),
NSGA-II performs the best. We consider the following three possible reasons.

• Our Lex-DE performs much better on the two seismic related objec-
tives. However, they are not available in the prediction. In the op-
timization period (Figure 5.3), NSGA-II also generated several solu-
tions that are good in P-F-14 and P-F-12. Therefore, it is not strange
for NSGA-II to have a good prediction result.

69

0 20 40 60 80 100
Generation

2

3

4

5

6

P-
F-

12
1e 5

Lex-DE
NSGA-II
RVEA

Figure 5.16: P-F-12 by generations (y-axis in log scale) in prediction on Volve

0 20 40 60 80 100
Generation

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

P-
F-

14

1e 5
Lex-DE
NSGA-II
RVEA

Figure 5.17: P-F-14 by generations (y-axis in log scale) in prediction on Volve

70

0.0 0.2 0.4 0.6 0.8 1.0
P-F-14

0.0

0.2

0.4

0.6

0.8

1.0

P-
F-

12

Lex-DE
NSGA-II
RVEA

Figure 5.18: Scatter plot of non-dominated solutions in prediction period on
Volve. The lower subplot is the zoom-in of the rectangle area in the upper subplot.

71

• Figure 5.18 shows the non-dominated solutions in the prediction pe-
riod of three algorithms in all five runs, as well as a zoom-in graph
of the center part of the non-dominated front. The solutions in the
same run are connected by a line. In most runs, NSGA-II and RVEA
generate several solutions that perform well on some objectives, but
sub-optimally on the others. These “sub-optimal” solutions may not
be dominated by any of the solutions of Lex-DE, but they are less useful
in the SHM problem.

• Our method may overfit the problem during the optimization phase.
Though all three algorithms do not contain any explicit way to over-
come overfitting, NSGA-II and RVEA tend to maintain a more diverse
solution set. This may lead to the better results in the prediction
period. To enhance the diversity of Lex-DE without generating sub-
optimal solutions, we can use other strong global mutation methods or
restart strategies, and keep the LS.

5.7 Conclusions of the Case Study

In this study, we have introduced the Lexicase Selection method [19, 124] and
proposed the Differential Evolution based on Automatic ϵ-Lexicase Selection
algorithm to solve the history matching problems. We have explained how
LS performs GKT. We have compared the proposed algorithm with two
other literature methods, the NSGA-II [20] and the RVEA [21], on two real-
world examples [109, 110]. The results have shown the superiority of the
proposed method with better optimization results (i.e., positive difference on
set coverage and smaller average distance to the ground truth) and a more
centralized solution set. What is more, we have found that this centralized
set usually provides more solutions close to the ground truth in the parameter
space. For an engineering problem, this feature generates a final ensemble of
models which better characterize the true model and parameter uncertainty.

Despite the above advantages, this method sometimes falls into local op-
timum. What is more, the prediction performance (difference on set coverage
in prediction) of Lex-DE is not as good as in the optimization phase. This
may be caused by the following reasons: 1) some objectives are not available
in the prediction period; 2) the set coverage may be affected by the extreme
points; 3) our Lex-DE may get overfitting in the optimization phase. In
the future, we are going to increase the diversity of Lex-DE by applying
strong global mutation methods. This can solve the local optimum and the

72

overfitting issue, without generating sub-optimal solutions.

In addition, the main outcome of this paper is developed from questioning
whether we should model the history matching problem as Multi-Objective
Optimization. In the recent optimization literature, Multi-Form Optimiza-
tion [24] has been proposed to reconcile multiple alternate formulations of a
single target task of interest. Part of our future research will consider the
history matching problem as a Multi-Form Optimization task.

73

Chapter 6

Knowledge-Driven Program Synthesis

In this chapter, we show a practice of our idea on the Adaptive Genetic
Knowledge Transfer system in Chapter 4. We introduce Knowledge-Driven
Program Synthesis (KDPS) as a variant of the Program Synthesis (PS) task
that requires the agent to solve a sequence of program synthesis problems.
In KDPS, the agent should use knowledge from the earlier problems to solve
the later ones. We propose a novel method based on PushGP to solve the
KDPS problem, which takes subprograms as processed knowledge. The pro-
posed method extracts subprograms from the solution of previously solved
problems by the Even Partitioning (EP) method and uses these subpro-
grams to solve the upcoming programming task using Adaptive Replace-
ment Mutation (ARM). We call this method PushGP+EP+ARM. With
PushGP+EP+ARM, no human effort is required in the knowledge extraction
and utilization processes. We compare the proposed method with PushGP, as
well as a method using subprograms manually extracted by a human. Our
PushGP+EP+ARM achieves better train error, success count, and faster
convergence than PushGP. Additionally, we demonstrate the superiority of
PushGP+EP+ARM when consecutively solving a sequence of six PS prob-
lems.

6.1 Introduction of the Case Study

Program Synthesis (PS) are techniques that automatically compose computer
programs to solve a certain task. PS is useful in fields such as automatic
bug fixing, automatic program completion, and low-level code development.
PS is a key issue in Artificial General Intelligence [127]. Genetic Program-
ming (GP) [50] is an Evolutionary Algorithm that searches for computer pro-
grams by selecting and updating a population of program candidates. Some

74

GP variants [23, 128, 129] can solve problems in a famous PS benchmark
suite [130] efficiently.

However, the difference between GP and a human programmer is still ob-
vious. As an Evolutionary Algorithm, GP heavily utilizes random sampling;
while a human programmer does not write random programs. Humans write
programs based on their knowledge, either the domain knowledge about the
problem or the programming skills from previous experiences.

Recently, several studies [131, 132, 16, 15, 133] have attempted to incorpo-
rate knowledge in PS, improving the synthesis performance. However, some
of these methods have drawbacks in requiring extra information [131, 132]
and human efforts [133].

In our prior study, we proposed the Adaptive Replacement Mutation
(ARM) [133]. The ARM is a mutation method designed for a well-known
GP variant called PushGP [23]. ARM uses subprograms from an archive
as knowledge, automatically selecting useful subprograms from the archive
according to the search history. Although the ARM provides a way to use
existing knowledge from an archive, the archive itself was made by a human.
Moreover, it is questionable whether the subprograms written by humans are
included in the programs generated by PushGP.

In this study, we focus on the task where a GP is required to solve a
sequence of PS problems. The GP should learn genetic knowledge from each
problem in the sequence and apply this genetic knowledge to improve its
performance in later problems. Ideally, this procedure should not require
human interference or extra external information. We call this task the
Knowledge-Driven Program Synthesis (KDPS) problem (Section 6.4).

To this end, we propose a novel method to solve the KDPS problem
based on PushGP [23]. The overall design is similar to our Adaptive Genetic
Knowledge Transfer system in Chapter 4. This method takes subprograms
as processed knowledge. The proposed method consecutively solves program-
ming tasks, extracts subprograms from the solution of solved problems, and
uses subprograms to solve an upcoming problem. To extract subprograms, we
propose Even Partitioning (EP) which divides a solution into several parts
with equal lengths. To use these subprograms, we apply ARM [133]. We
name our method PushGP+EP+ARM. The details of the proposed meth-
ods, including EP and ARM, are given in Section 6.4.

We analyze the proposed method in two KDPS tasks. The “compos-

75

ite task” (Section 6.5) includes three “composite” PS problems. For each
problem, PushGP+EP+ARM prepares the knowledge archive based on the
component problems. The “sequential task” (Section 6.6) has six problems
that must be solved in sequence, including the composite and component
problems of the previous “composite task”. PushGP+EP+ARM updates
the knowledge archive at each step of the sequence. PushGP+EP+ARM
achieves a better overall success rate and convergence speed in the compos-
ite task, and in the later stages of the sequential task, showing that it can
create a useful knowledge archive. However, the comparison with a human-
curated archive shows that there is still room for improvement.

Our main contributions are as follows.

1. We introduce a new type of task called the KDPS problem. KDPS
includes a sequence of single PS problems. The agent is required to
solve the single PS problems, extract knowledge, and use it in the later
PS problems.

2. We propose EP to extract subprograms from the solution of a solved
problem. We propose PushGP+EP+ARM to solve KDPS problems
based on EP and our previous work on ARM [133].

3. Our implementation of the proposed method based on PyshGP [134]
and experimental scripts are in an online repository 1.

6.2 PushGP

In Section 2.4, we have introduced Koza’s tree-based GP [50]. Despite the
tree-based GP, several variants of GP [135, 67, 136, 23] have been applied to
solve PS problems. Among these variants, we highlight PushGP [67, 23, 129],
which generates programs based on a Turing-complete language called Push.
PushGP supports generating computer programs with multiple data types
and control flows, such as loop and recursion.

6.2.1 Push Language

Precisely, Push is the name of a family of languages that are developed for
Evolutionary Computation (EC) to generate computer programs. Versions

1https://github.com/Y1fanHE/ssci2022

76

https://github.com/Y1fanHE/ssci2022

of Push have been implemented by many different researchers in different
languages (Clojure, Python, Java, Julia, etc.). New versions generally add
some new features, delete some old features, and change name conventions.

Here we introduce the version that is used in our experiments. It is
embedded in a Python implementation of PushGP called PyshGP [134].

In PyshGP [134], there are two types of Push programs, linear Push pro-
grams and normal Push programs. The linear Push programs are exactly
the genomes that are modified through evolutionary process. However, the
Push interpreter cannot directly run these linear Push programs before they
are translated into normal Push programs. A vital difference between the
two types of the programs is that normal Push programs allow nested struc-
tures called “code blocks” while linear Push programs implement equivalent
programs with extra instructions such as “closer”.

For example, the following two programs are exactly equivalent; however,
the first one uses linear Push and the second one uses normal Push.

1. input 0 exec dup int inc exec dup int inc closer closer

2. input 0 exec dup (int inc exec dup (int inc))

After translated from the genome (linear Push program), a normal Push
program is run by an interpreter using multiple stacks of different data types
based on the following steps.

1. To execute an instruction, the interpreter pops the required arguments
from the corresponding stacks.

2. After executed the instruction, the results are pushed to the corre-
sponding stacks.

3. If the interpreter cannot find enough arguments from the stacks, the
instruction will be skipped.

Based on the third rule, any Push program is valid to run. Therefore, we
do not need to consider the constraint handling techniques when developing
new mutation or crossover methods.

77

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Parent

Parent with marks

Child

Figure 6.1: Addition Mutation in PushGP [23]. The Addition Mutation traverses
the parent solution and adds a random instruction before the current instruction
with a probability.

6.2.2 PushGP with Uniform Mutation by Addition
and Deletion

Helmuth et al. have proposed a variant of PushGP [23] that employs random
initialization, Lexicase Selection (Section 5.3), and Uniform Mutation by
Addition and Deletion (UMAD).

The UMAD contains two steps: Addition Mutation (AM) and Deletion
Mutation (DM). AM takes one individual as the parent. AM traverses all
instructions in the genome and inserts a random instruction before the cur-
rent instruction with a probability. Similarly, DM takes one individual as the
parent as well. DM traverses all instructions in the genome and deletes the
current instruction with a probability (not necessary to be equal with the
probability in AM). Figure 6.1 and Figure 6.2 illustrates the examples of
AM and DM.

78

1 2 3 4 5 6

1 2 3 4 5 6

1

Parent

Parent with marks

Child

4 5

Figure 6.2: Deletion Mutation in PushGP [23]. The Deletion Mutation traverses
the parent solution and deletes the current instruction with a probability.

6.3 Incorporating Knowledge in Program Synthesis

Several recent works have attempted to incorporate knowledge in PS [132,
131, 16, 15, 133, 137]. Some studies require extra information, such as text
description [131] and human-written code [132, 133, 137]. Notably, these
prior studies try to use human knowledge with GP, and thus cannot be con-
sidered as Genetic Knowledge Transfer (GKT) methods, since GKT happens
among several Evolutionary Algorithms.

Helmuth et al. have proposed to transfer the instructions from the so-
lution of other problems to construct the instruction set of PushGP [16].
Wick et al. have proposed to use the whole individuals of a problem as
a part of the initial population when solving similar problems [15]. Both
studies [16, 15] could be considered as GKT.

Recently, we came up with a mutation method that allows using subpro-
grams in a prepared archive with PushGP [133]. Compared with the study
by Helmuth [16], a subprogram can capture more information from the solu-
tion than a single instruction. Compared to Wick et al.’s study [15], the way
to use an external archive might be more efficient when the number of the

79

past problems is large. However, in our prior study [133], the subprogram is
extracted by hand from human-written solutions. This step is non-trivial and
requires a lot of human effort. Also, it is questionable whether the programs
generated by PushGP would look similar to human written ones.

In this case study, we aim to apply GKTmethods to solve a sequence of PS
problems, so that the algorithm could improve itself through problem-solving.
We suggest that this idea is helpful for generating complex programs. In
the next section, we introduce the problem description of Knowledge-Driven
Program Synthesis and demonstrate a simple algorithm based on PushGP
to solve it.

6.4 Knowledge-Driven Program Synthesis

6.4.1 Problem Description

We introduce a type of problem where a GP algorithm is required to solve
a sequence of PS problems. These PS problems are at a large amount and
not necessary to be similar. Moreover, when solving a new task, the algo-
rithm should use the genetic knowledge learned from previously solved tasks.
We call this type of problem Knowledge-Driven Program Synthesis (KDPS).
Clearly, KDPS is an application of the sequential problem-solving that we
have described in Section 4.2.1.

The formalization of KDPS is presented in (6.1). T j is one of the M PS
tasks to solve, containing Nj pairs of I/O. p̂j and Sj are the solution program
and the genetic knowledge that extracted from the dynamics of solving T j,
respectively. T j is solved by Solve(·) based on the genetic knowledge from the
previously solved problems Sj−1 ∪ . . . S0. S0 is the initial genetic knowledge
before solving the first problem T 1. By default, S0 is empty.

p̂j, Sj ← Solve(T j|Sj−1 ∪ · · · ∪ S0)

s.t. T = {T 1, . . . , TM}
T j = {(inj

1, out
j
1), . . . , (in

j
Nj
, outjNj

)}
S0 = ∅

(6.1)

As an initial step, we use subprograms of the final solution program p̂j as
the processed knowledge. The subprograms hold partial information about

80

Feedback

GP

Task i

Extractor
(EP)

Program

Subprogram
Archive

Selector
(Adaptive Selection)

Utilizer
(RM)Subprogram

Subprograms from
Task 1 to Task i-1

Figure 6.3: Knowledge-Driven Program Synthesis (KDPS) system. The KDPS
system is an implementation of the idea of Adaptive Genetic Knowledge Transfer
system. The KDPS system consecutively solves Program Synthesis tasks, extracts
sub-programs as genetic knowledge, and uses them in the future tasks.

the original program. Moreover, any sequence of Push instructions is valid
to run. Therefore, we can easily take a subprogram and use it to mutate
another Push program.

Sj ← Extract(p̂j) (6.2)

6.4.2 Overview of the System Design

To solve KDPS problems, we propose a method based on PushGP [23] to
consecutively solve programming tasks, extract subprograms from the final
solutions (processed knowledge), and utilize these subprograms in the next
problem. This entirely automated method is based on Adaptive Genetic
Knowledge Transfer (AGKT) system in Section 4.3.

Figure 6.3 illustrates the AGKT system for KDPS problem. At the
moment, the system has solved i-1 PS problems. The system is going to
solve the i-th PS problem through the following steps.

81

1. The system selects subprograms from the archive that contains subpro-
grams from all the previous tasks with an adaptive strategy.

2. The selected subprograms are utilized by Replacement Mutation (RM)
in PushGP algorithm to reproduce new individuals.

3. The feedback in fitness improvement will be sent back to the adaptive
selector to update the selection probability of every subprogram.

4. After PushGP finds the final solution, the extractor called Even Parti-
tioning (EP) will extract subprograms from this solution program and
store in the archive.

We leave the implementation of the filter which creates a subset of the
archive as a future work.

6.4.3 Even Partitioning

EP is a simple method that divides a genome (linear Push program) into
n parts with equal lengths. For example, a program with 15 instructions is
divided into subprograms with lengths of (3, 3, 3, 3, 3) if n = 5; the same
program is divided into subprograms with lengths of (4, 4, 4, 3) if n = 4.

Before dividing the solution program, a simplification operation is per-
formed to remove the redundant instructions (i.e., instructions without enough
arguments to execute). This simplification step is implemented in PyshGP
library [134]. After the dividing step, the subprograms are stored into an
archive for the future use.

6.4.4 Replacement Mutation

RM requires a parent candidate (of length l1) from the PushGP population
and a subprogram (of length l2). RM replaces a random partition (of length
l2) of the parent candidate using the subprogram. If l1 < l2, the entire parent
is replaced by the subprogram.

82

6.4.5 Adaptive Selection

The adaptive selection is designed to automatically select helpful subpro-
grams for the current task when an archive contains both helpful and un-
helpful subprograms.

The idea behind is similar to the parameter adaptation in many Self-
Adaptive Evolutionary Algorithms (SAEAs) such as JADE [89]. In SAEAs,
parameters such as mutation rate are randomly initialized for every individ-
ual. The individuals are then mutated based on the parameters associated
with them. After mutation, the parameters that are associated with im-
proved individuals will have more chance to survive to the next generation.
In other words, the parameters are searched along with the solutions to the
problem.

In this study, we exploit helpful subprograms so far with proportional
selection to select subprograms based on their quality measure. The propor-
tion to select a subprogram depends on how many times that it improves
parents. Meanwhile, we sometimes randomly select subprograms to perform
exploration.

We call RM with adaptive selection Adaptive Replacement Mutation
(ARM). We provide the pseudocode of PushGP with ARM inAlgorithm 6.1.
Q(s) is the count that a subprogram s improves the parents during the search.
The probability in proportional selection is computed as in (6.3).

p(s) =
Q(s)

Σsi∈SQ(si)
(6.3)

rarm is the probability to perform ARM, and rprop is the probability to
perform the proportional selection of subprograms. In Line 12 of Algo-
rithm 6.1, the symbol “≺” means “better than”. In our implementation, a
solution is better than another if it solves more I/O cases (i.e., contains more
“0” in its error vector).

In some cases, the subprograms may include more inputs than the current
problem (e.g., a subprogram contains input 3 while the current problem only
takes two inputs). We replace the input in the subprograms with a random
input of the current problem.

83

Algorithm 6.1: PushGP with Adaptive Replacement Mutation

input : subprogram archive S where every subprogram s holds a
quality metric Q(s) = 0

output: final population X
1 X ← initialize();
2 repeat
3 X ′ ← ∅;
4 for i← 1 . . . |P | do
5 x← lexicase-select(X);
6 if rand() < rarm then
7 if rand() < rprop then
8 s← proportional-select(S);
9 else

10 s← random-select(S);

11 x′ ← replacement-mutate(x, s);
12 if f(x′) ≺ f(x) then
13 Q(s)← Q(s) + 1;

14 else
15 x′ ← umad-mutate(x);

16 X ′ ← X ′ ∪ {x′};
17 X ← X ′;

18 until termination criteria are satisfied;
19 return X;

84

6.5 Experiments on Composite Problems

6.5.1 Experimental Methods

In this experiment, we focus on an intermediate step of the KDPS prob-
lem (Figure 6.3). That is, to solve a composite problem with our proposed
method after solving its sub-problems. We compare the following three meth-
ods.

PushGP+EP+ARM: PushGP with ARM. The subprogram archive con-
tains the subprograms extracted from the final solutions by EP.

PushGP+HP+ARM: PushGP with ARM. The subprogram archive con-
tains the subprograms extracted from the final solutions by human (HP
stands for human partitioning).

PushGP: the original PushGP proposed by Helmuth et al. [23].

We use PushGP [23] to solve three problems in GPSB [130]. They are
“small or large” (SL), “compare string lengths” (CSL), and “median” (MD).
We take the best and shortest solutions among 25 runs (after 5000 steps of
simplification) of the three problems to generate subprogram archives. For
PushGP+EP+ARM, We use EP to get five equal-length subprograms for
every best and shortest solution automatically. The subprograms used by
PushGP+HP+ARM are partitions of the same solutions, however, devised
by a human.

We then solve the composite problems of SL, CSL, and MD. When solv-
ing a composite problem, PushGP+EP+ARM and PushGP+HP+ARM will
use subprogram archives generated from solutions of the corresponded sub-
problems by EP and HP, respectively. We compare the three methods on
three composite problems.

Median String Length (MSL): given 3 strings, print the median of their
lengths.

Small or Large Median (SLM): given 4 integers a, b, c, d, print “small” if
median(a,b,c)< d and “large” if median(a,b,c)> d (and nothing if median(a,b,c)
= d).

Small or Large String (SLS): given a string n, print “small” if len(n) <

85

100 and “large” if len(n) ≥ 200 (and nothing if 100 ≤ len(n) < 200).

MSL is the composite problem of MD and CSL; SLM is composed of SL
and MD; SLS is a composite of SL and CSL.

For all three methods, we use a population size of 1000 and a maximum
generation of 300. The UMAD mutation in all three methods is set with ad-
dition rate of 0.09 and deletion rate of 0.0826 based on Helmuth’s study [23].
For PushGP+EP+ARM and PushGP+HP+ARM, the rate to perform ARM
rarm is 0.1 and the rate to perform the proportional selection of subprograms
rprop is 0.5 based on the original paper of ARM [133]. For every algorithm,
we run 25 repetitions on every problem.

6.5.2 Experimental results

Table 6.1 to Table 6.3 present the error in the training period of the three
methods in 25 runs. The mean value is marked with an underline if the
difference between the method and PushGP [23] is significant with a 95%
family confidence level through a Wilcoxon rank sum test (i.e., the indi-
vidual confidence level is computed by Šidák correction.2). The proposed
PushGP+EP+ARM outperforms the original PushGP with a significant dif-
ference in the training error. However, compared with PushGP+HP+ARM,
the difference is not statistically significant.

Table 6.4 shows the success counts in the test period of the three com-
parison methods in 25 runs. We count a run as a successful run only when it
passes all I/O cases in both training and testing data. The value is marked
with an underline if the difference between the method and PushGP [23] is
significant with a 95% family confidence level through a Fisher’s exact test
(i.e., the individual confidence level is computed by Šidák correction2). Com-
pared to PushGP, our PushGP+EP+ARM achieves higher success counts,
however, without statistical significance. Compared to the method using
human-made subprograms (PushGP+HP+ARM), our proposed method gets
a lower success count on MSL, a higher success count on SLM, and an equal
success count on SLS. However, these differences are not significant.

We provide a comparison of the best train error by generations from Fig-
ure 6.4 to Figure 6.6. PushGP+EP+ARM holds a much faster con-

2The individual confidence levels in Section 6.5 and Section 6.6 are 99.4% and 99.1%,
respectively.

86

Table 6.1: Train error on MSL in Experiment I

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 3.00 0.12 0.60
PushGP+HP+ARM 0.00 0.00 4.00 0.28 0.98
PushGP 0.00 3.00 59.00 12.00 19.14

Table 6.2: Train error of SLM in Experiment I

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 15.00 41.00 14.24 14.20
PushGP+HP+ARM 0.00 5.00 40.00 12.80 13.62
PushGP 5.00 35.00 70.00 37.40 17.15

Table 6.3: Train error on SLS in Experiment I

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 5.00 59.00 17.96 22.19
PushGP+HP+ARM 0.00 0.00 50.00 7.76 13.17
PushGP 0.00 69.00 85.00 59.40 24.01

Table 6.4: Success count in Experiment I

Method MSL SLM SLS

PushGP+EP+ARM 12 6 8
PushGP+HP+ARM 15 5 8
PushGP 4 0 1

87

0 50 100 150 200 250 300
Generation

0

25

50

75

100

125

150

175

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP+HP+ARM
PushGP

Figure 6.4: Anytime train error on MSL in Experiment I

vergence speed compared to PushGP; however, it is slightly slower than
PushGP+HP+ARM.

In the case of solving the sub-problems and then the composite problems,
PushGP+EP+ARM achieves a better performance in train error, success
count, and faster convergence, compared to the original PushGP [23]. How-
ever, its performance in both success count and convergence speed is worse
than PushGP+HP+ARM without statistical significance.

6.6 Experiments on Sequential Problems

6.6.1 Experimental Methods

In this second experiment, we test the entire KDPS process in Figure 6.3.
That is, using PushGP+ARM+EP to solve a sequence of problems. They
are the six problems in the last experiment, namely SL, CSL, MD, MSL,
SLM, and SLS. Every time a problem is solved, we extract subprograms
from its solution and store them in the archive. This archive will be used

88

0 50 100 150 200 250 300
Generation

0

50

100

150

200

250

300

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP+HP+ARM
PushGP

Figure 6.5: Anytime train error on SLM in Experiment I

0 50 100 150 200 250 300
Generation

0

50

100

150

200

250

300

350

400

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP+HP+ARM
PushGP

Figure 6.6: Anytime train error on SLS in Experiment I

89

when solving the next problem.

PushGP+EP+ARM: solving a sequence of PS problems consecutively by
PushGP+EP+ARM in the way as in Figure 6.3; every time a problem is
solved, the subprograms are extracted by EP from its solution and added to
the archive. This archive is used by PushGP+ARM when solving the next
problem.

PushGP: solving a sequence of PS problems independently using the original
PushGP [23].

We solve six problems, namely MD, CSL, SL, MSL, SLM, and SLS. The
first three problems are from GPSB [130]. They do not share any sub-
problems. The last three problems are the composite problems of MD, CSL,
and SL (Section 6.5). Any pair of the three composite problems share a
sub-problem.

For PushGP+EP+ARM, we run a procedure as in Figure 6.3. We solve
the first problem (MD) with the original PushGP (i.e., PushGP+ARM with
an empty archive) and the rest problems with PushGP+ARM. We initialize
an empty subprogram archive when solving the first problem. For every
problem, we run 25 repetitions and take the best and shortest program. We
use EP to extract five subprograms from the best and shortest programs.
These subprograms are stored in the archive that we initialized before and
used in solving the later problems by PushGP+ARM. For PushGP, we solve
the six problems independently in the same order with PushGP+EP+ARM.
However, no subprograms are stored and used.

We provide results of solving the six problems in two different orders.
Order 1 solves simple problems at first and later harder ones, while Order 2
is a reverse order of Order 1.

• Order 1: MD → CSL → SL → MSL → SLM → SLS

• Order 2: SLS → SLM → MSL → SL → CSL → MD

We use the same parameter settings as in Section 6.5. We present the
results and the statistical test similarly as in Section 6.5.

90

Table 6.5: Train error on MD in Experiment II with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 8.00 0.56 1.96
PushGP 0.00 0.00 5.00 0.20 1.00

Table 6.6: Train error of CSL in Experiment II with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 6.00 1.56 2.02
PushGP 0.00 0.00 8.00 1.48 2.40

Table 6.7: Train error on SL in Experiment I with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 25.00 80.00 23.08 19.14
PushGP 0.00 30.00 75.00 29.84 28.89

Table 6.8: Train error on MSL in Experiment II with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 14.00 1.04 3.10
PushGP 0.00 3.00 59.00 12.00 19.14

Table 6.9: Train error of SLM in Experiment II with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 20.00 45.00 19.20 12.39
PushGP 5.00 35.00 70.00 37.40 17.15

Table 6.10: Train error on SLS in Experiment I with Order 1

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 5.00 85.00 18.40 23.75
PushGP 0.00 69.00 85.00 59.40 24.01

91

Table 6.11: Train error on SLS in Experiment I with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 30.00 92.00 35.00 31.67
PushGP 0.00 69.00 85.00 59.40 24.01

Table 6.12: Train error of SLM in Experiment II with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 35.00 75.00 34.72 19.43
PushGP 5.00 35.00 70.00 37.40 17.15

Table 6.13: Train error on MSL in Experiment II with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 27.00 2.88 6.35
PushGP 0.00 3.00 59.00 12.00 19.14

Table 6.14: Train error on SL in Experiment I with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 60.00 10.08 18.15
PushGP 0.00 30.00 75.00 29.84 28.89

Table 6.15: Train error of CSL in Experiment II with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 6.00 0.36 1.25
PushGP 0.00 0.00 8.00 1.48 2.40

Table 6.16: Train error on MD in Experiment II with Order 2

Method Best Median Worst Mean Std.

PushGP+EP+ARM 0.00 0.00 0.00 0.00 0.00
PushGP 0.00 0.00 5.00 0.20 1.00

92

Table 6.17: Success count in Experiment II with Order 1

Method MD CSL SL MSL SLM SLS

PushGP+EP+ARM 19 6 4 9 1 5
PushGP 18 8 7 4 0 1

6.6.2 Experimental results of Order 1

According to Table 6.5 to Table 6.10, PushGP+EP+ARM holds a signifi-
cantly lower train error than PushGP on the three composite problems, while
the difference on the rest three problems is not significant. Table 6.17 shows
the test success count of PushGP+EP+ARM and PushGP. The test success
count of PushGP+EP+ARM is lower than PushGP on CSL and SL but
higher than PushGP on MSDLEN, SLM, and SLS. All these difference is not
statistically significant through Fisher’s exact test. On MD, the difference
between the two methods is very small, since it is solved by two equivalent
methods. Figure 6.7 to Figure 6.12 provide the best error in the popula-
tion by generations of both methods. It is obvious that PushGP+EP+ARM
converges faster than PushGP on all problems except MD.

6.6.3 Experimental results of Order 2

From Table 6.11 to Table 6.16, PushGP+EP+ARM holds a lower train er-
ror than PushGP on all problems without statistical significance. Table 6.18
shows the test success count of PushGP+EP+ARM and PushGP. The test
success count of PushGP+EP+ARM is higher than PushGP on most of the
problems except MD. Especially on CSL, PushGP+EP+ARM gets 16 success
while PushGP only gets 8. However, all these difference is not statistically
significant through Fisher’s exact test. Figure 6.13 to Figure 6.18 provide
the best error in the population by generations of both methods. It is obvi-
ous that PushGP+EP+ARM converges faster than PushGP on all problems
except SLM.

Therefore, when solving a sequence of problems, PushGP+EP+ARM
achieves a better optimization performance (i.e., train error and convergence
speed). This performance finally leads to a higher test success count, how-
ever, without statistical significance.

93

Table 6.18: Success count in Experiment II with Order 2

Method SLS SLM MSL SL CSL MD

PushGP+EP+ARM 2 3 6 12 16 17
PushGP 1 0 4 7 8 18

6.7 Discussion

We find that the PushGP+EP+ARM in Section 6.5 is better than the
PushGP+EP+ARM in Section 6.6 with Order 1, in terms of test success
on the three composite problems. Though their algorithms are the same,
they have at least two differences.

1. In Section 6.6, PushGP+EP+ARM adds five subprograms to the
archive after solving one problem. Therefore, the size of the archive
is 15, 20, and 25 when solving MSL, SLM, and SLS, respectively.
However, in Section 6.5, PushGP+EP+ARM uses archives with 10
subprograms (five for one sub-problem). A larger subprogram archive
makes it harder to select helpful subprograms by the adaptive strategy
in Algorithm 6.1.

2. CSL and SL are solved in different conditions in the two experiments.
In Section 6.6, CSL is solved with subprograms from MD; SL is
solved with subprograms from MD and CSL. However, no subprogram
is used when solving MD, CSL, and SL in Section 6.5 (i.e., they are
solved by the original PushGP [23]). Moreover, MD, CSL, and SL
do not share the same sub-problems. Therefore, solving CSL and SL
with PushGP+EP+ARM is not as good as with the original PushGP
(as shown in Table 6.17). Thus, the subprograms extracted in Sec-
tion 6.6 is not as good as in Section 6.5. These subprograms further
influence the performance of PushGP+EP+ARM in Section 6.6 in
solving the later problems MSL, SLM, and SLS. This issue is called
“negative transfer”.

In Section 6.6 (problems in Order 2), we find that PushGP+EP+ARM
holds a lower success count on MD. However, on MD, the training error of all
runs with PushGP+EP+ARM is 0 (Table 6.16). Moreover, Figure 6.18
shows PushGP+EP+ARM converges much faster than PushGP. This obser-
vation may indicate an over-fitting issue with the proposed method.

94

0 50 100 150 200 250 300
Generation

0

25

50

75

100

125

150

175

200

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.7: Anytime train error on MD in Experiment II with Order 1

0 50 100 150 200 250 300
Generation

5

10

15

20

25

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.8: Anytime train error on CSL in Experiment II with Order 1

95

0 50 100 150 200 250 300
Generation

50

100

150

200

250

300

350

400

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.9: Anytime train error on SL in Experiment II with Order 1

0 50 100 150 200 250 300
Generation

0

25

50

75

100

125

150

175

200

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.10: Anytime train error on MSL in Experiment II with Order 1

96

0 50 100 150 200 250 300
Generation

50

100

150

200

250

300

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.11: Anytime train error on SLM in Experiment II with Order 1

0 50 100 150 200 250 300
Generation

50

100

150

200

250

300

350

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.12: Anytime train error on SLS in Experiment II with Order 1

97

0 50 100 150 200 250 300
Generation

50

100

150

200

250

300

350

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.13: Anytime train error on SLS in Experiment II with Order 2

0 50 100 150 200 250 300
Generation

50

100

150

200

250

300

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.14: Anytime train error on SLM in Experiment II with Order 2

98

0 50 100 150 200 250 300
Generation

0

25

50

75

100

125

150

175

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.15: Anytime train error on MSL in Experiment II with Order 2

0 50 100 150 200 250 300
Generation

0

50

100

150

200

250

300

350

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.16: Anytime train error on SL in Experiment II with Order 2

99

0 50 100 150 200 250 300
Generation

5

10

15

20

25

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.17: Anytime train error on CSL in Experiment II with Order 2

0 50 100 150 200 250 300
Generation

0

25

50

75

100

125

150

175

200

Tr
ai

n
Er

ro
r

PushGP+EP+ARM
PushGP

Figure 6.18: Anytime train error on MD in Experiment II with Order 2

100

6.8 Conclusions of the Case Study

In this study, we have introduced a problem called Knowledge-Driven Pro-
gram Synthesis (KDPS) problem. KDPS requires an agent to solve a se-
quence of related PS problems. To solve KDPS, we have proposed a method
based on PushGP [23]. This method consecutively solves programming tasks,
extracts subprograms from the solutions as knowledge, and uses these sub-
programs to solve the next problem. To extract subprograms from the so-
lution of a solved problem, we have proposed the Even Partitioning (EP)
method; to use these subprograms, we applied Adaptive Replacement Muta-
tion (ARM) [133].

We have compared our proposed method (PushGP+EP+ARM) with
the original PushGP [23] and a method extracting subprograms by humans
(PushGP+HP+ARM). Our PushGP+EP+ARM has achieved a significantly
better train error, success count, and convergence speed than PushGP. The
performance of our proposed method is slightly worse than PushGP+HP+
ARM. We have further compared our PushGP+EP+ARM with the original
PushGP in solving a sequence of problems. Our method has achieved a bet-
ter train error and convergence speed. Our PushGP+EP+ARM also holds
a higher test success count, however, without statistical significance.

The current method to automatically construct the subprogram archive
is rather naive. We would like to improve this method in our future work. In
the discussion section in Section 6.6, PushGP+EP+ARM has limitations
in dealing with the growing subprogram archive after solving more problems.
Moreover, PushGP+EP+ARM also suffers from the “negative transfer” of
the subprograms from the unrelated problems. A part of our future work is
to fix these issues. Methods such as a more efficient adaptation or filtering
strategy on subprograms are promising to solve the two limitations. Addi-
tionally, the strategy of extracting and using knowledge could be applied to
problems other than program synthesis, such as training soft robotics [138].

101

Chapter 7

Conclusions

7.1 Automatic Discovery of Sub-tasks

The idea of our Adaptive Genetic Knowledge Transfer (AGKT) system de-
rives from two separate projects that are not mentioned in this dissertation.
Both projects are trying to bring some characteristics of human intelligence
to Evolutionary Algorithms (EAs).

In the first project, we have attempted to build a set of subtrees to help
the search of Genetic Programming (GP). Based on our own programming
experiences, there are many code snippets that are frequently used in different
tasks. This first project aims to bring a similar thing to GP. However, we
finally have failed to find this promising set of subtrees.

In our second project, we have come up with a research question on
whether a GP can automatically discover sub-problems of the given prob-
lem. Decomposing a task into several sub-tasks is vital for solving complex
problems. At the very beginning, we have tried a method that evolves a pop-
ulation of I/O datasets (that represents sub-problems) and uses the solutions
to these datasets to solve the original task. These datasets are randomly ini-
tialized but evolved based on the quality of their solutions. However, this
method cannot perform efficiently since we have to run an entire GP to get
the solution to an evolved dataset.

Fortunately, we have realized that we can combine the two research
projects. If a GP has solved the sub-problems of the current task, we can
simply store the solutions to these sub-problems in an archive (like the first
project). When solving the current task, we select and use these solutions
in the evolutionary process of GP (like the second project). We have no-

102

ticed the similarity between this design and a human who solves tasks and
improves himself/herself. Based on this idea, we have come up with our
Knowledge-Driven Program Synthesis (KDPS) problem and system.

However, we have not proposed the idea of Genetic Knowledge Transfer
(GKT) till now. We have started to think about GKT when we were trying
to summarize all the research projects during these three years. Before the
KDPS system, we have studied a method using Lexicase Selection (LS) [19] to
solve the Seismic History Matching (SHM) problems. We have surprisingly
found the connection between the two works: in both methods, an EA is
affected by the dynamics of another EA. We have further investigated similar
techniques in the existing literature, including MOEA/D [36] and Multi-Task
Optimization [2].

After that, we have summarized the common parts of these methods and
proposed GKT.We have also come up with a Naive GKTmodel that migrates
selected individuals from one EA to another. Many GKT techniques could be
considered as modifications of this naive model. Finally, we have realized the
adaptive selection of the genetic knowledge in our KDPS is one of the most
important differences between those naive methods in the literature. This
adaptive selection allows us to automatically find suitable sub-problems from
past problems.

7.2 Summary of the Research

In this dissertation, we start with Genetic Knowledge Transfer (GKT) in
Evolutionary Computation with multiple tasks. We define GKT as the pro-
cess where an Evolutionary Algorithm is affected by the dynamics of an-
other EA in Chapter 3. We further show several examples of GKT in
the existing optimization paradigms, including Multi-Objective Optimiza-
tion (MOO), Multi-Task Optimization (MTO), and Genetic Programming
(GP).

Based on the above examples, we summarize a basic model of GKT called
Naive GKT (NGKT) in Section 4.1. NGKT happens when an EA sends
selected individuals to another EA, and these individuals are used as parents
to reproduce child individuals in the second EA.

We then discuss the possible limitations of the NGKT method, regard-
ing a future scenario where an EA is required to solve an endless sequence

103

of distinct tasks. That is, the naive method can transfer genetic knowl-
edge from an unrelated task which might not be helpful to the current task.
To address this issue, this work proposes a method that allows the adap-
tive transfer of genetic knowledge called the Adaptive Genetic Knowledge
Transfer (AGKT) system in Section 4.2. The AGKT system consecutively
solves tasks, extracts sub-solutions as genetic knowledge, and reuses these
sub-solutions properly when the user poses a new task. To select a proper
sub-solution, the system uses the similarity between tasks and trial-and-error
methods. We provide general design for every single component.

In Chapter 5, we present a case study on using GKT to solve the Seismic
History Matching (SHM) problem. SHM requires finding a subsurface model
that matches a set of simulated data with real-world records. We proposed a
Differential Evolution algorithm based on Lexicase Selection (LS) [19] to solve
the SHM problems. We explain how GKT happens in the LS in an implicit
manner. The results on two SHM benchmarks indicated the superiority of
our proposed method in terms of closer distance to the ground truth and a
more concentrated solution set with fewer unphysical solutions.

We provide a case study to demonstrate our AGKT system inChapter 6.
We first set up a new type of problem called the Knowledge-Driven Program
Synthesis (KDPS) problem. A KDPS problem requires a GP algorithm to
solve a sequence of distinct Program Synthesis (PS) tasks. Moreover, the
GP should use the genetic knowledge extracted from previous tasks to solve
the current PS task. We propose a method to solve this KDPS problem
based on PushGP [23]. This method extracts subprograms as genetic knowl-
edge by Even Partitioning (EP) and stores them in an archive. Adaptive
Replacement Mutation (ARM) is designed to reuse these subprograms based
on the feedback from the evolutionary process of PushGP. We test our pro-
posed method on three composite problems as well as two sequences of six
PS problems (i.e., two KDPS problems). Our proposed method achieves a
better success rate.

We show some possible future directions in the next section.

7.3 Future Directions

First, we would like to focus our main attention on developing new methods
to solve the KDPS problem. In the current method to solve the KDPS
problem, subprograms are extracted by a simple EP method. A method

104

that considers the logical connection between instructions is promising. For
example, a program could be represented as a graph. Therefore, techniques
of graph theory, such as community detection, could be used to address this
issue.

We have not implemented the filter for the KDPS system. A possible
design is to measure the similarity between tasks by computing the similarity
between text descriptions. Related to this topic, Large Language Models
(LLMs) are another method to solve PS problems, however, using a different
specification of natural language. A part of the future works is to discuss the
possibility of combining KDPS with LLMs or other Neural Networks (NNs).
One possible way is to build a recommendation system that recommends
subprograms from the archive for reusing in the current PS problem.

The current method of subprogram selection could be further improved,
considering a different scenario where a large set of subprograms are in-
cluded. Possible improvements could be a new type of feedback to use or a
new strategy to keep the balance of the exploitation and exploration of the
subprograms.

We are also interested in studying how different problems influence the
results of our KDPS system. One way is to perform a fitness landscape anal-
ysis to show some insights on GKT from a view of optimization. Moreover,
it is also interesting to apply the KDPS system to solve some real-world
problems such as training soft robotics and extracting image features.

In spite of new methods to solve KDPS problems, another important
topic is communication and collaboration between two KDPS systems. If
we have two KDPS systems that have solved two sequences of problems in
different categories, it is possible to build a method that allows collaboration
between two systems to solve a complex problem. In this case, the genetic
knowledge is transferred from one KDPS system to another.

105

Acknowledgements

First, I would like to thank Prof. Tetsuya Sakurai and Prof. Claus Aranha
from the University of Tsukuba for being my supervisors and providing fi-
nancial support. I would also like to thank other members of my thesis
committee, Prof. Hitoshi Iba from the University of Tokyo, Prof. Yukiyoshi
Kameyama, and Prof. Koji Hasebe from the University of Tsukuba, for their
insightful questions and comments.

The Seismic History Matching case study was done in collaboration with
Prof. Romain Chassagne and Dr. Antony Hallam from Herriot-Watt Univer-
sity, Scotland. I would like to thank them for providing benchmark problems
and computational devices for this research project. I am also grateful for
their suggestions on this case study.

I would like to thank the members of the Evolutionary Computation
group in the Mathematical Modeling and Algorithm Lab at the University of
Tsukuba. This work cannot be finished without their kind help. I would like
to express my thanks to Mr. Yuri Lavinas, Mr. Jair Pereira, and Mr. Fabio
Tanaka for their technical comments on the Knowledge-Driven Program Syn-
thesis case study.

I would like to thank my parents for their financial support in my life
in Japan, as well as the rental server for experiments. Finally, I would like
to thank those who have provided mental support for me during these three
years.

106

Bibliography

[1] Kalyanmoy Deb. Multi-objective optimization. In Search methodolo-
gies, pages 403–449. Springer, 2014.

[2] Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Multifactorial evo-
lution: toward evolutionary multitasking. IEEE Transactions on Evo-
lutionary Computation, 20(3):343–357, 2015.

[3] Yongliang Chen, Jinghui Zhong, Liang Feng, and Jun Zhang. An adap-
tive archive-based evolutionary framework for many-task optimization.
IEEE Transactions on Emerging Topics in Computational Intelligence,
4(3):369–384, 2019.

[4] Tingyang Wei, Shibin Wang, Jinghui Zhong, Dong Liu, and Jun Zhang.
A review on evolutionary multi-task optimization: Trends and chal-
lenges. IEEE Transactions on Evolutionary Computation, 2021.

[5] Wojciech Jaskowski, Krzysztof Krawiec, and Bartosz Wieloch. Multi-
task code reuse in genetic programming. In Proceedings of the 10th
annual conference companion on Genetic and evolutionary computa-
tion, pages 2159–2164, 2008.

[6] Eric O Scott and Kenneth A De Jong. Automating knowledge transfer
with multi-task optimization. In 2019 IEEE Congress on Evolutionary
Computation (CEC), pages 2252–2259. IEEE, 2019.

[7] Ahmed Kattan, Faiyaz Doctor, Yew-Soon Ong, and Alexandros Agapi-
tos. Genetic programming multitasking. In 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pages 1004–1012. IEEE,
2020.

[8] Mazhar Ansari Ardeh, Yi Mei, and Mengjie Zhang. A novel multi-task
genetic programming approach to uncertain capacitated arc routing
problem. In Proceedings of the Genetic and Evolutionary Computation
Conference, pages 759–767, 2021.

107

[9] Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan, and Mengjie
Zhang. Multitask genetic programming-based generative hyperheuris-
tics: A case study in dynamic scheduling. IEEE Transactions on Cy-
bernetics, 2021.

[10] Gregory Seront. External concepts reuse in genetic programming.
In working notes for the AAAI Symposium on Genetic programming,
pages 94–98. MIT/AAAI Cambridge, 1995.

[11] Maarten Keijzer, Conor Ryan, Gearoid Murphy, and Mike Cattolico.
Undirected training of run transferable libraries. In European Confer-
ence on Genetic Programming, pages 361–370. Springer, 2005.

[12] Muhammad Iqbal, Bing Xue, and Mengjie Zhang. Reusing extracted
knowledge in genetic programming to solve complex texture image clas-
sification problems. In Pacific-Asia Conference on Knowledge Discov-
ery and Data Mining, pages 117–129. Springer, 2016.

[13] Muhammad Iqbal, Bing Xue, Harith Al-Sahaf, and Mengjie Zhang.
Cross-domain reuse of extracted knowledge in genetic programming for
image classification. IEEE Transactions on Evolutionary Computation,
21(4):569–587, 2017.

[14] Damien O’Neill, Harith Al-Sahaf, Bing Xue, and Mengjie Zhang. Com-
mon subtrees in related problems: A novel transfer learning approach
for genetic programming. In 2017 IEEE Congress on Evolutionary
Computation (CEC), pages 1287–1294. IEEE, 2017.

[15] Jordan Wick, Erik Hemberg, and Una-May O’Reilly. Getting a head
start on program synthesis with genetic programming. In European
Conference on Genetic Programming (Part of EvoStar), pages 263–
279. Springer, 2021.

[16] Thomas Helmuth, Edward Pantridge, Grace Woolson, and Lee Spec-
tor. Genetic source sensitivity and transfer learning in genetic pro-
gramming. In ALIFE 2020: The 2020 Conference on Artificial Life,
pages 303–311. MIT Press, 2020.

[17] Romain Chassagne and Claus Aranha. A pragmatic investigation of the
objective function for subsurface data assimilation problem. Operations
Research Perspectives, 7:100143, 2020.

108

[18] Yifan He, Claus Aranha, Antony Hallam, and Romain Chassagne. Op-
timization of subsurface models with multiple criteria using lexicase
selection. Operations Research Perspectives, 9:100237, 2022.

[19] Thomas Helmuth, Lee Spector, and James Matheson. Solving un-
compromising problems with lexicase selection. IEEE Transactions on
Evolutionary Computation, 19(5):630–643, 2014.

[20] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyari-
van. A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
transactions on evolutionary computation, 6(2):182–197, 2002.

[21] Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff.
A reference vector guided evolutionary algorithm for many-objective
optimization. IEEE Transactions on Evolutionary Computation,
20(5):773–791, 2016.

[22] Yifan He, Claus Aranha, and Tetsuya Sakurai. Knowledge-driven
program synthesis via adaptive replacement mutation and auto-
constructed subprogram archives. In 2022 IEEE Symposium Series
on Computational Intelligence (SSCI), pages 14–21. IEEE, 2022.

[23] Thomas Helmuth, Nicholas Freitag McPhee, and Lee Spector. Pro-
gram synthesis using uniform mutation by addition and deletion. In
Proceedings of the Genetic and Evolutionary Computation Conference,
pages 1127–1134, 2018.

[24] Abhishek Gupta and Yew-Soon Ong. Back to the roots: Multi-x evo-
lutionary computation. Cognitive Computation, 11(1):1–17, 2019.

[25] John H Holland. Genetic algorithms. Scientific american, 267(1):66–
73, 1992.

[26] James Kennedy and Russell Eberhart. Particle swarm optimization. In
Proceedings of ICNN’95-international conference on neural networks,
volume 4, pages 1942–1948. IEEE, 1995.

[27] Kenneth V Price. Differential evolution. In Handbook of optimization,
pages 187–214. Springer, 2013.

[28] Takehisa Kohira, Hiromasa Kemmotsu, Oyama Akira, and Tomoaki
Tatsukawa. Proposal of benchmark problem based on real-world car
structure design optimization. In Proceedings of the Genetic and Evo-
lutionary Computation Conference Companion, pages 183–184, 2018.

109

[29] Harry M Markowits. Portfolio selection. Journal of finance, 7(1):71–91,
1952.

[30] Antonio C Briza and Prospero C Naval Jr. Stock trading system based
on the multi-objective particle swarm optimization of technical indica-
tors on end-of-day market data. Applied Soft Computing, 11(1):1191–
1201, 2011.

[31] Ron Janssen. Multiobjective decision support for environmental man-
agement, volume 2. Springer Science & Business Media, 2012.

[32] Thibaut Lust and Jacques Teghem. The multiobjective traveling sales-
man problem: a survey and a new approach. In Advances in Multi-
Objective Nature Inspired Computing, pages 119–141. Springer, 2010.

[33] Kalyanmoy Deb. Multi-objective optimisation using evolutionary algo-
rithms: an introduction. In Multi-objective evolutionary optimisation
for product design and manufacturing, pages 3–34. Springer, 2011.

[34] Carlos A Coello Coello and Margarita Reyes Sierra. A study of the
parallelization of a coevolutionary multi-objective evolutionary algo-
rithm. In Mexican international conference on artificial intelligence,
pages 688–697. Springer, 2004.

[35] Jesús Guillermo Falcón-Cardona and Carlos A Coello Coello. Indicator-
based multi-objective evolutionary algorithms: A comprehensive sur-
vey. ACM Computing Surveys (CSUR), 53(2):1–35, 2020.

[36] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary
algorithm based on decomposition. IEEE Transactions on evolutionary
computation, 11(6):712–731, 2007.

[37] Indraneel Das and John E Dennis. Normal-boundary intersection: A
new method for generating the pareto surface in nonlinear multicriteria
optimization problems. SIAM journal on optimization, 8(3):631–657,
1998.

[38] Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary
crossover for continuous search space. Complex systems, 9(2):115–148,
1995.

[39] Kalyanmoy Deb, Karthik Sindhya, and Tatsuya Okabe. Self-adaptive
simulated binary crossover for real-parameter optimization. In Proceed-
ings of the 9th annual conference on genetic and evolutionary compu-
tation, pages 1187–1194, 2007.

110

[40] Jinghui Zhong, Linhao Li, Wei-Li Liu, Liang Feng, and Xiao-Min Hu.
A co-evolutionary cartesian genetic programming with adaptive knowl-
edge transfer. In 2019 IEEE Congress on Evolutionary Computation
(CEC), pages 2665–2672. IEEE, 2019.

[41] Abhishek Gupta, Jacek Mańdziuk, and Yew-Soon Ong. Evolutionary
multitasking in bi-level optimization. Complex & Intelligent Systems,
1(1):83–95, 2015.

[42] Aritz D Martinez, Javier Del Ser, Eneko Osaba, and Francisco Her-
rera. Adaptive multifactorial evolutionary optimization for multitask
reinforcement learning. IEEE Transactions on Evolutionary Computa-
tion, 26(2):233–247, 2021.

[43] Ying Bi, Bing Xue, and Mengjie Zhang. Learning and sharing: A mul-
titask genetic programming approach to image feature learning. IEEE
Transactions on Evolutionary Computation, 26(2):218–232, 2021.

[44] Gen Yokoya, Heng Xiao, and Toshiharu Hatanaka. Multifactorial opti-
mization using artificial bee colony and its application to car structure
design optimization. In 2019 IEEE Congress on Evolutionary Compu-
tation (CEC), pages 3404–3409. IEEE, 2019.

[45] Yongliang Chen, Jinghui Zhong, and Mingkui Tan. A fast memetic
multi-objective differential evolution for multi-tasking optimization. In
2018 IEEE Congress on Evolutionary Computation (CEC), pages 1–8.
IEEE, 2018.

[46] Genghui Li, Qingfu Zhang, and Weifeng Gao. Multipopulation evolu-
tion framework for multifactorial optimization. In Proceedings of the
Genetic and Evolutionary Computation Conference Companion, pages
215–216, 2018.

[47] Maoguo Gong, Zedong Tang, Hao Li, and Jun Zhang. Evolutionary
multitasking with dynamic resource allocating strategy. IEEE Trans-
actions on Evolutionary Computation, 23(5):858–869, 2019.

[48] Shijia Huang, Jinghui Zhong, and Wei-Jie Yu. Surrogate-assisted evo-
lutionary framework with adaptive knowledge transfer for multi-task
optimization. IEEE transactions on emerging topics in computing,
9(4):1930–1944, 2019.

111

[49] Tingyang Wei and Jinghui Zhong. A preliminary study of knowl-
edge transfer in multi-classification using gene expression program-
ming. Frontiers in Neuroscience, 13:1396, 2020.

[50] John R Koza. Genetic programming as a means for programming
computers by natural selection. Statistics and computing, 4(2):87–112,
1994.

[51] Michael A Lones. Optimising optimisers with push gp. In European
Conference on Genetic Programming (Part of EvoStar), pages 101–117.
Springer, 2020.

[52] Edmund K Burke, Michel Gendreau, Matthew Hyde, Graham Kendall,
Gabriela Ochoa, Ender Özcan, and Rong Qu. Hyper-heuristics: A
survey of the state of the art. Journal of the Operational Research
Society, 64(12):1695–1724, 2013.

[53] Douglas Adriano Augusto and Helio JC Barbosa. Symbolic regres-
sion via genetic programming. In Proceedings. Vol. 1. Sixth Brazilian
Symposium on Neural Networks, pages 173–178. IEEE, 2000.

[54] Steven Gustafson, Edmund K Burke, and Natalio Krasnogor. On im-
proving genetic programming for symbolic regression. In 2005 IEEE
Congress on Evolutionary Computation, volume 1, pages 912–919.
IEEE, 2005.

[55] John R Koza, Forrest H Bennett, David Andre, and Martin A Keane.
Automated design of both the topology and sizing of analog electri-
cal circuits using genetic programming. In Artificial intelligence in
design’96, pages 151–170. Springer, 1996.

[56] Julian F Miller, Peter Thomson, and Terence Fogarty. Designing elec-
tronic circuits using evolutionary algorithms. arithmetic circuits: A
case study. Genetic algorithms and evolution strategies in engineering
and computer science, pages 105–131, 1997.

[57] Shotaro Kamio and Hitoshi Iba. Adaptation technique for integrating
genetic programming and reinforcement learning for real robots. IEEE
Transactions on Evolutionary Computation, 9(3):318–333, 2005.

[58] John Rieffel, Davis Knox, Schuyler Smith, and Barry Trimmer. Grow-
ing and evolving soft robots. Artificial life, 20(1):143–162, 2014.

112

[59] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A ge-
netic programming approach to designing convolutional neural network
architectures. In Proceedings of the genetic and evolutionary computa-
tion conference, pages 497–504, 2017.

[60] Adam Gaier and David Ha. Weight agnostic neural networks. Advances
in neural information processing systems, 32, 2019.

[61] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural archi-
tecture search: A survey. The Journal of Machine Learning Research,
20(1):1997–2017, 2019.

[62] Jean-Yves Potvin, Patrick Soriano, and Maxime Vallée. Generating
trading rules on the stock markets with genetic programming. Com-
puters & Operations Research, 31(7):1033–1047, 2004.

[63] Shu-Heng Chen, Tzu-Wen Kuo, and Kong-Mui Hoi. Genetic program-
ming and financial trading: how much about” what we know”. In
Handbook of financial engineering, pages 99–154. Springer, 2008.

[64] C Aranha, O Kasai, U Uchide, and H Iba. Day-trading rules devel-
opment by genetic programming. In Information Sciences 2007, pages
515–521. World Scientific, 2007.

[65] Ying Bi, Bing Xue, and Mengjie Zhang. Genetic programming with
image-related operators and a flexible program structure for feature
learning in image classification. IEEE Transactions on Evolutionary
Computation, 25(1):87–101, 2020.

[66] Ying Bi, Bing Xue, and Mengjie Zhang. Genetic programming for
image classification: An automated approach to feature learning, vol-
ume 24. Springer Nature, 2021.

[67] Lee Spector. Autoconstructive evolution: Push, pushgp, and pushpop.
In Proceedings of the Genetic and Evolutionary Computation Confer-
ence (GECCO-2001), volume 137, 2001.

[68] John R Woodward. Modularity in genetic programming. In European
Conference on Genetic Programming, pages 254–263. Springer, 2003.

[69] Peter J Angeline and Jordan Pollack. Evolutionary module acquisi-
tion. In Proceedings of the second annual conference on evolutionary
programming, pages 154–163, 1993.

113

[70] Simon C Roberts, Daniel Howard, and John R Koza. Evolving mod-
ules in genetic programming by subtree encapsulation. In European
Conference on Genetic Programming, pages 160–175. Springer, 2001.

[71] Lee Spector. Evolving control structures with automatically defined
macros. In Working Notes of the AAAI Fall Symposium on Genetic
Programming, pages 99–105. American Association for Artificial Intel-
ligence Menlo Park, Calif, 1995.

[72] Wolfgang Banzhaf, Dirk Banscherus, and Peter Dittrich. Hierarchi-
cal genetic programming using local modules. In Unifying Themes in
Complex Systems, pages 321–330. CRC Press, 2018.

[73] Lee Spector, Brian Martin, Kyle Harrington, and Thomas Helmuth.
Tag-based modules in genetic programming. In Proceedings of the 13th
annual conference on Genetic and evolutionary computation, pages
1419–1426, 2011.

[74] Lee Spector, Kyle Harrington, and Thomas Helmuth. Tag-based modu-
larity in tree-based genetic programming. In Proceedings of the 14th an-
nual conference on Genetic and evolutionary computation, pages 815–
822, 2012.

[75] Aniko Ekart and Sandor Z. Nemeth. Selection based on the pareto
nondomination criterion for controlling code growth in genetic pro-
gramming. Genetic Programming and Evolvable Machines, 2(1):61–73,
2001.

[76] Stefan Bleuler, Martin Brack, Lothar Thiele, and Eckart Zitzler. Mul-
tiobjective genetic programming: Reducing bloat using spea2. In Pro-
ceedings of the 2001 Congress on Evolutionary Computation (IEEE
Cat. No. 01TH8546), volume 1, pages 536–543. IEEE, 2001.

[77] Edwin D De Jong, Richard A Watson, and Jordan B Pollack. Reduc-
ing bloat and promoting diversity using multi-objective methods. In
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, pages 11–18, 2001.

[78] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A
field guide to genetic programming. Published via http://lulu.com
and freely available at http://www.gp-field-guide.org.uk, 2008.

114

[79] Linda Argote and Paul Ingram. Knowledge transfer: A basis for com-
petitive advantage in firms. Organizational behavior and human deci-
sion processes, 82(1):150–169, 2000.

[80] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2009.

[81] Yu Zhang and Qiang Yang. A survey on multi-task learning. IEEE
Transactions on Knowledge and Data Engineering, 2021.

[82] Jianping Gou, Baosheng Yu, Stephen J Maybank, and Dacheng Tao.
Knowledge distillation: A survey. International Journal of Computer
Vision, 129(6):1789–1819, 2021.

[83] Abhishek Gupta, Yew-Soon Ong, and Liang Feng. Insights on transfer
optimization: Because experience is the best teacher. IEEE Transac-
tions on Emerging Topics in Computational Intelligence, 2(1):51–64,
2017.

[84] Clément Legrand, Diego Cattaruzza, Laetitia Jourdan, and Marie-
Eléonore Kessaci. Enhancing moea/d with learning: application to
routing problems with time windows. In Proceedings of the Genetic
and Evolutionary Computation Conference Companion, pages 495–498,
2022.

[85] Martin Pelikan and Mark W Hauschild. Learn from the past: Improv-
ing model-directed optimization by transfer learning based on distance-
based bias. Missouri Estimation of Distribution Algorithms Laboratory,
University of Missouri in St. Louis, MO, United States, Tech. Rep,
2012007, 2012.

[86] Lingyu Huang, Liang Feng, Handing Wang, Yaqing Hou, Kai Liu, and
Chao Chen. A preliminary study of improving evolutionary multi-
objective optimization via knowledge transfer from single-objective
problems. In 2020 IEEE International Conference on Systems, Man,
and Cybernetics (SMC), pages 1552–1559. IEEE, 2020.

[87] Edgar Galván and Fergal Stapleton. Promoting semantics in multi-
objective genetic programming based on decomposition. arXiv preprint
arXiv:2012.04717, 2020.

[88] Fergal Stapleton and Edgar Galván. Semantic neighborhood ordering
in multi-objective genetic programming based on decomposition. In

115

2021 IEEE Congress on Evolutionary Computation (CEC), pages 580–
587. IEEE, 2021.

[89] Jingqiao Zhang and Arthur C Sanderson. Jade: adaptive differential
evolution with optional external archive. IEEE Transactions on evolu-
tionary computation, 13(5):945–958, 2009.

[90] P Mitchell and R Chassagne. 4d assisted seismic history matching
using a differential evolution algorithm at the harding south field. In
81st EAGE Conference and Exhibition 2019, volume 2019, pages 1–5.
European Association of Geoscientists & Engineers, 2019.

[91] Dennis Obidegwu, Romain Chassagne, and Colin MacBeth. Seismic
assisted history matching using binary maps. Journal of Natural Gas
Science and Engineering, 42:69–84, 2017.

[92] Dean S Oliver, Kristian Fossum, Tuhin Bhakta, Ivar Sandø, Geir Næv-
dal, and Rolf Johan Lorentzen. 4d seismic history matching. Journal
of Petroleum Science and Engineering, 207:109119, 2021.

[93] Qi Zhang, Romain Chassagne, and Colin MacBeth. Seismic history
matching uncertainty with weighted objective functions. In ECMOR
XVI-16th European conference on the mathematics of oil recovery, vol-
ume 2018, pages 1–12. European Association of Geoscientists & Engi-
neers, 2018.

[94] Karl D Stephen, Juan Soldo, Colin MacBeth, and Mike Christie.
Multiple-model seismic and production history matching: a case study.
SPE Journal, 11(04):418–430, 2006.

[95] Claus Aranha, Ryoji Tanabe, Romain Chassagne, and Alex Fukunaga.
Optimization of oil reservoir models using tuned evolutionary algo-
rithms and adaptive differential evolution. In 2015 IEEE Congress on
Evolutionary Computation (CEC), pages 877–884. IEEE, 2015.

[96] Qi Zhang, Romain Chassagne, and Colin MacBeth. 4d seismic and
production history matching, a combined formulation using hausdorff
and fréchet metric. In SPE Europec featured at 81st EAGE Conference
and Exhibition. OnePetro, 2019.

[97] Ralf Schulze-Riegert, Markus Krosche, Abul Fahimuddin, and Shawket
Ghedan. Multiobjective optimization with application to model vali-
dation and uncertainty quantification. In SPE Middle East oil and gas
show and conference. OnePetro, 2007.

116

[98] F Verga, M Cancelliere, and D Viberti. Improved application of as-
sisted history matching techniques. Journal of Petroleum Science and
Engineering, 109:327–347, 2013.

[99] Linah Mohamed, Mike Christie, and Vasily Demyanov. History match-
ing and uncertainty quantification: multiobjective particle swarm opti-
misation approach. In SPE EUROPEC/EAGE annual conference and
exhibition. OnePetro, 2011.

[100] Mike Christie, Dmitry Eydinov, Vasily Demyanov, Jack Talbot, Dan
Arnold, and Vassili Shelkov. Use of multi-objective algorithms in his-
tory matching of a real field. In SPE reservoir simulation symposium.
OnePetro, 2013.

[101] JJ Hutahaean, V Demyanow, and Michael Andrew Christie. Impact
of model parameterisation and objective choices on assisted history
matching and reservoir forecasting. In SPE/IATMI Asia Pacific oil &
gas conference and exhibition. OnePetro, 2015.

[102] Junko Hutahaean, Vasily Demyanov, and Michael A Christie. On opti-
mal selection of objective grouping for multiobjective history matching.
SPE Journal, 22(04):1296–1312, 2017.

[103] Mohammad Sayyafzadeh and Manouchehr Haghighi. Regularization in
history matching using multi-objective genetic algorithm and bayesian
framework (spe 154544). In 74th EAGE Conference and Exhibition
incorporating EUROPEC 2012, pages cp–293. European Association
of Geoscientists & Engineers, 2012.

[104] Mohammed S Kanfar and Christopher R Clarkson. Reconciling flow-
back and production data: A novel history matching approach for liq-
uid rich shale wells. Journal of Natural Gas Science and Engineering,
33:1134–1148, 2016.

[105] Han-Young Park, Akhil Datta-Gupta, and Michael J King. Handling
conflicting multiple objectives using pareto-based evolutionary algo-
rithm during history matching of reservoir performance. In SPE Reser-
voir Simulation Symposium. OnePetro, 2013.

[106] Jaejun Kim, Joe M Kang, Changhyup Park, Yongjun Park, Jihye Park,
and Seojin Lim. Multi-objective history matching with a proxy model
for the characterization of production performances at the shale gas
reservoir. Energies, 10(4):579, 2017.

117

[107] Zheng Zhang, Hye Young Jung, Akhil Datta-Gupta, and Mojdeh
Delshad. History matching and optimal design of chemically enhanced
oil recovery using multi-objective optimization. In SPE Reservoir Sim-
ulation Conference. OnePetro, 2019.

[108] Junko Hutahaean, Vasily Demyanov, and Mike Christie. Many-
objective optimization algorithm applied to history matching. In 2016
IEEE Symposium Series on Computational Intelligence (SSCI), pages
1–8. IEEE, 2016.

[109] Mike Christie, Colin MacBeth, and Sam Subbey. Multiple history-
matched models for teal south. The Leading Edge, 21(3):286–289, 2002.

[110] Tony Hallam, Colin MacBeth, Romain Chassagne, and Hamed Amini.
4d seismic study of the volve field-an open subsurface-dataset. First
Break, 38(2):59–70, 2020.

[111] Jude Lubega Musuuza, David Gustafsson, Rafael Pimentel, Louise
Crochemore, and Ilias Pechlivanidis. Impact of satellite and in situ data
assimilation on hydrological predictions. Remote Sensing, 12(5):811,
2020.

[112] E Essouayed, E Verardo, A Pryet, RL Chassagne, and O Atteia. An
iterative strategy for contaminant source localisation using glma op-
timization and data worth on two synthetic 2d aquifers. Journal of
contaminant hydrology, 228:103554, 2020.

[113] G Corte, R Chassagne, and C MacBeth. Seismic history matching in
the pressure and saturation domain for reservoir connectivity assess-
ment. In 82nd EAGE Annual Conference & Exhibition, volume 2021,
pages 1–5. European Association of Geoscientists & Engineers, 2021.

[114] Zhen Yin, Colin MacBeth, and Romain Chassagne. Joint interpretation
of interwell connectivity by integrating 4d seismic with injection and
production fluctuations. In EUROPEC 2015. OnePetro, 2015.

[115] Daniel Rahon, Paul Francis Edoa, and Mohamed Masmoudi. Identifi-
cation of geological shapes in reservoir engineering by history matching
production data. SPE Reservoir Evaluation & Engineering, 2(05):470–
477, 1999.

[116] Cristina CB Cavalcante, Célio Maschio, Antonio Alberto Santos, Denis
Schiozer, and Anderson Rocha. History matching through dynamic
decision-making. PloS one, 12(6):e0178507, 2017.

118

[117] Jérôme E Onwunalu and Louis J Durlofsky. Application of a particle
swarm optimization algorithm for determining optimum well location
and type. Computational Geosciences, 14(1):183–198, 2010.

[118] Richard Rwechungura, Mohsen Dadashpour, and Jon Kleppe. Applica-
tion of particle swarm optimization for parameter estimation integrat-
ing production and time lapse seismic data. In SPE offshore Europe
Oil and Gas Conference and Exhibition. OnePetro, 2011.

[119] Baehyun Min, Joe M Kang, Sunghoon Chung, Changhyup Park, and Il-
sik Jang. Pareto-based multi-objective history matching with respect to
individual production performance in a heterogeneous reservoir. Jour-
nal of Petroleum Science and Engineering, 122:551–566, 2014.

[120] Baehyun Min, Joe M Kang, Hoyoung Lee, Suryeom Jo, Changhyup
Park, and Ilsik Jang. Development of a robust multi-objective history
matching for reliable well-based production forecasts. Energy Explo-
ration & Exploitation, 34(6):795–809, 2016.

[121] BM Negash, Mohammed A Ayoub, Shiferaw Regassa Jufar, and
Aban John Robert. History matching using proxy modeling and multi-
objective optimizations. In ICIPEG 2016, pages 3–16. Springer, 2017.

[122] YM Han, Changhyup Park, and Joo Myung Kang. Estimation of future
production performance based on multi-objective history matching in
a waterflooding project. In SPE EUROPEC/EAGE annual conference
and exhibition. OnePetro, 2010.

[123] Osho Ilamah. A multiobjective dominance and decomposition algo-
rithm for reservoir model history matching. Petroleum, 5(4):352–366,
2019.

[124] William La Cava, Lee Spector, and Kourosh Danai. Epsilon-lexicase
selection for regression. In Proceedings of the Genetic and Evolutionary
Computation Conference 2016, pages 741–748, 2016.

[125] Arash Mirzabozorg, Long Nghiem, Zhangxing Chen, and Chaodong
Yang. Differential evolution for assisted history matching process: Sagd
case study. In SPE Heavy Oil Conference-Canada. OnePetro, 2013.

[126] Yasin Hajizadeh, Mike Christie, and Vasily Demyanov. History match-
ing with differential evolution approach; a look at new search strate-
gies. In SPE EUROPEC/EAGE annual conference and exhibition.
OnePetro, 2010.

119

[127] Michael O’Neill and Lee Spector. Automatic programming: The open
issue? Genetic Programming and Evolvable Machines, 21(1):251–262,
2020.

[128] Jonathan Kelly, Erik Hemberg, and Una-May O’Reilly. Improving ge-
netic programming with novel exploration-exploitation control. In Eu-
ropean Conference on Genetic Programming, pages 64–80. Springer,
2019.

[129] Thomas Helmuth and Lee Spector. Explaining and exploiting the ad-
vantages of down-sampled lexicase selection. In ALIFE 2020: The 2020
Conference on Artificial Life, pages 341–349. MIT Press, 2020.

[130] Thomas Helmuth and Lee Spector. General program synthesis bench-
mark suite. In Proceedings of the 2015 Annual Conference on Genetic
and Evolutionary Computation, pages 1039–1046, 2015.

[131] Erik Hemberg, Jonathan Kelly, and Una-May O’Reilly. On domain
knowledge and novelty to improve program synthesis performance with
grammatical evolution. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1039–1046, 2019.

[132] Dominik Sobania and Franz Rothlauf. Teaching gp to program like a
human software developer: using perplexity pressure to guide program
synthesis approaches. In Proceedings of the Genetic and Evolutionary
Computation Conference, pages 1065–1074, 2019.

[133] Yifan He, Claus Aranha, and Tetsuya Sakurai. Incorporating sub-
programs as knowledge in program synthesis by pushgp and adaptive
replacement mutation. In Proceedings of the Genetic and Evolutionary
Computation Conference Companion, pages 554–557, 2022.

[134] Edward Pantridge and Lee Spector. Pyshgp: Pushgp in python. In
Proceedings of the Genetic and Evolutionary Computation Conference
Companion, pages 1255–1262, 2017.

[135] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Trans-
actions on Evolutionary Computation, 5(4):349–358, 2001.

[136] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael
O’Neill. Extending program synthesis grammars for grammar-guided
genetic programming. In International Conference on Parallel Problem
Solving from Nature, pages 197–208. Springer, 2018.

120

[137] Joel Lehman, Jonathan Gordon, Shawn Jain, Kamal Ndousse, Cathy
Yeh, and Kenneth O. Stanley. Evolution through large models. arXiv
preprint arXiv:2206.08896, 2022.

[138] Federico Pigozzi, Yujin Tang, Eric Medvet, and David Ha. Evolving
modular soft robots without explicit inter-module communication using
local self-attention. arXiv preprint arXiv:2204.06481, 2022.

121

	Introduction
	Main Contributions
	Structure of the Dissertation
	List of Publications
	List of Abbreviations

	Evolutionary Computation with Multiple Tasks
	Evolutionary Computation
	Multi-Objective Optimization
	Problem Description
	Multi-Objective Evolutionary Algorithms
	Multi-Objective Evolutionary Algorithm based on Decomposition

	Multi-Task Optimization
	Problem Description
	Multi-Factorial Evolutionary Algorithm
	Multi-Population Multi-Task Evolutionary Algorithms

	Genetic Programming
	Program Synthesis
	Koza's Tree-based Genetic Programming
	Modularity and Automatically Defined Function
	Multiple Tasks in Genetic Programming

	Genetic Knowledge Transfer
	Definition
	Examples in Multi-Objective Optimization
	Examples in Multi-Task Optimization
	Examples in Genetic Programming

	Adaptive Transfer of Genetic Knowledge
	Naive Genetic Knowledge Transfer
	Adaptive Genetic Knowledge Transfer System
	Solving Many Tasks in a Sequence
	System Design

	Multi-Criteria Seismic History Matching
	Introduction of the Case Study
	Seismic History Matching
	Problem Description
	Multi-Objective Evolutionary Algorithms in Seismic History Matching Literature

	Lexicase Selection
	Genetic Knowledge Transfer in Lexicase Selection

	Differential Evolution based on Lexicase Selection
	Experiments
	Test Problems
	Experimental Methods
	Experimental Results

	Discussion
	Distribution of distance to the ground truth
	Performance in the prediction period

	Conclusions of the Case Study

	Knowledge-Driven Program Synthesis
	Introduction of the Case Study
	PushGP
	Push Language
	PushGP with Uniform Mutation by Addition and Deletion

	Incorporating Knowledge in Program Synthesis
	Knowledge-Driven Program Synthesis
	Problem Description
	Overview of the System Design
	Even Partitioning
	Replacement Mutation
	Adaptive Selection

	Experiments on Composite Problems
	Experimental Methods
	Experimental results

	Experiments on Sequential Problems
	Experimental Methods
	Experimental results of Order 1
	Experimental results of Order 2

	Discussion
	Conclusions of the Case Study

	Conclusions
	Automatic Discovery of Sub-tasks
	Summary of the Research
	Future Directions

	Acknowledgements
	Bibliography

